探索:在图1至图3中,已知△ABC的面积为a,(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S1,则S1=(用含a的代数式表示)(2)如图2,延长△ABC的边BC

题目简介

探索:在图1至图3中,已知△ABC的面积为a,(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S1,则S1=(用含a的代数式表示)(2)如图2,延长△ABC的边BC

题目详情

探索:在图1至图3中,已知△ABC的面积为a,
(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S1,则S1=   (用含a的代数式表示)
(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE.若△DEC的面积为S2,则S2=      (用含a的代数式表示)
(3)在图2的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图3).若阴影部分的面积为S3,则S3=        (用含a的代数式表示)
并运用上述(2)的结论写出理由.发现:像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次.可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的       
应用:要在一块足够大的空地上栽种花卉,工程人员进行了如下的图案设计:首先在△ABC的空地上种红花,然后将△ABC向外扩展三次(图4已给出了前两次扩展的图案).在第一次扩展区域内种谎话,第二次扩展区域内种紫花,第三次扩展区域内种蓝花.如果种红花的区域(即△ABC)的面积是10平方米,请你运用上述结论求出:
①种紫花的区域的面积;
②种蓝花的区域的面积.
题型:探究题难度:中档来源:江苏省月考题

答案

解:(1)a
(2)2a
(3)6a
(3)①黄花区域的面积是6×10=60平方米
紫花区域的面积是6×(60+10)=420平方米
②蓝花区域的面积是6 ×(420+60+10)=2940平方米

更多内容推荐