阅读下面材料:根据两角和与差的正弦公式,有sin(α+β)=sinαcosβ+cosαsinβ------①sin(α-β)=sinαcosβ-cosαsinβ------②由①+②得sin(α+β)

题目简介

阅读下面材料:根据两角和与差的正弦公式,有sin(α+β)=sinαcosβ+cosαsinβ------①sin(α-β)=sinαcosβ-cosαsinβ------②由①+②得sin(α+β)

题目详情

阅读下面材料:根据两角和与差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=β 有α=
A+B
2
,β=
A-B
2

代入③得 sinA+subB=2sin
A+B
2
cos
A-B
2

(Ⅰ) 类比上述推理方法,根据两角和与差的余弦公式,证明:cosA-cosB=-2sin
A+B
2
sin
A-B
2

(Ⅱ)求值:sin220°+cos250°+sin20°cos50°(提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)
题型:解答题难度:中档来源:不详

答案

解 (Ⅰ)证明:因为cos(α+β)=cosαcosβ-sinαsinβ,------①
cos(α-β)=cosαcosβ+sinαsinβ,------②…(1分)
①-②得cos(α+β)-cos(α-β)=-2sinαsinβ.------③…(2分)
令α+β=A,α-β=B,有 α=class="stub"A+B
2
,β=class="stub"A-B
2

代入③得 cosA-cosB=-2sinclass="stub"A+B
2
sinclass="stub"A-B
2
.…(5分)
(Ⅱ)sin220°+cos250°+sin20°cos50°=1+class="stub"1
2
(cos100°-cos40°)+class="stub"1
2
(sin70°-sin30°)…(8分)
=1-sin70°sin30°+class="stub"1
2
sin70°-class="stub"1
2
sin30°=class="stub"3
4
.…(12分)

更多内容推荐