(本小题满分12分)在如图所示的多面体中,底面△ABC是边长为2的正三角形,DA和EC均垂直于平面ABC,且DA=2,EC=1.(Ⅰ)求点A到平面BDE的距离;(Ⅱ)求二面角B–ED–A的正切值.-高

题目简介

(本小题满分12分)在如图所示的多面体中,底面△ABC是边长为2的正三角形,DA和EC均垂直于平面ABC,且DA=2,EC=1.(Ⅰ)求点A到平面BDE的距离;(Ⅱ)求二面角B–ED–A的正切值.-高

题目详情

(本小题满分12分)在如图所示的多面体中,底面△ABC是边长为2的正三角形,DAEC均垂直于平面ABC,且DA = 2,EC = 1.
(Ⅰ)求点A到平面BDE的距离;
(Ⅱ)求二面角BEDA的正切值.
题型:解答题难度:偏易来源:不详

答案


(Ⅰ)∵DE = BE =BD =
SBDE =,设点A到平面BDE的距离为h
又∵SABC =VBADE = VABDE
   ∴h =
即点A到平面BDE的距离为. ……6分
(Ⅱ)∵DA⊥平面ABC,∴平面DACE⊥平面ABC
AC的中点M,连结BM,则BMACBM⊥平面DACE
MMNDE,交DEN,连结BN,则BNDE
∴∠BNM是所求二面角的平面角.
ACDE的延长线相交于点P,∵DA = 2EC,∴CP = 2
由△MNP∽△DAPMP = 3,DA = 2
DP =,∴MN =
又∵BM =,∴tan∠BNM =. ……12分

更多内容推荐