已知函数f(x)=23sinxcosx+2cos2x-1(x∈R),g(x)=|f(x)|.(I)求函数g(x)的单调递减区间;(II)若A是锐角△ABC的一个内角,且满足f(A)=23,求sin2A

题目简介

已知函数f(x)=23sinxcosx+2cos2x-1(x∈R),g(x)=|f(x)|.(I)求函数g(x)的单调递减区间;(II)若A是锐角△ABC的一个内角,且满足f(A)=23,求sin2A

题目详情

已知函数f(x)=2
3
sinxcosx+2cos2x-1(x∈R),g(x)=|f(x)|.
(I)求函数g(x)的单调递减区间;
(II)若A是锐角△ABC的一个内角,且满足f(A)=
2
3
,求sin2A的值.
题型:解答题难度:中档来源:杭州一模

答案

(Ⅰ) f(x)=2
3
sinxcosx+2cos2x-1=
3
sin2x+cos2x
=2sin(2x+class="stub"π
6
)

g(x)=|2sin(2x+class="stub"π
6
)|
,∵y=|sinx|的单调递减区间为[kπ+class="stub"π
2
,kπ+π]
,(k∈Z).
∴由kπ+class="stub"π
2
≤2x+class="stub"π
6
≤kπ+π
   得:class="stub"kπ
2
+class="stub"π
6
≤x≤class="stub"kπ
2
+class="stub"5π
12

则g(x)的单调递减区间为[class="stub"kπ
2
+class="stub"π
6
,class="stub"kπ
2
+class="stub"5π
12
]
(k∈Z).  
(Ⅱ)∵f(A)=class="stub"2
3

即:sin(2A+class="stub"π
6
)=class="stub"1
3

∵A∈(0,class="stub"π
2
),且sin(2A+class="stub"π
6
)>
0,
2A+class="stub"π
6
∈(0,π)

2A+class="stub"π
6
∈(0,class="stub"π
2
)
,则sin(2A+class="stub"π
6
)=class="stub"1
3
class="stub"1
2
=sinclass="stub"π
6
,∴2A+class="stub"π
6
class="stub"π
6
,这不可能,
2A+class="stub"π
6
∈(class="stub"π
2
,π)
,所以cos(2A+class="stub"π
6
)=-
2
2
3

sin2A=sin[(2A+class="stub"π
6
)-class="stub"π
6
]=sin(2A+class="stub"π
6
)cosclass="stub"π
6
-cos(2A+class="stub"π
6
)sinclass="stub"π
6
=class="stub"1
3
3
2
+
2
2
3
•class="stub"1
2
=
3
+2
2
6

sin2A=
3
+2
2
6

更多内容推荐