设n为正整数,规定:fn(x)=f{f[…f(x)…]}n个f,已知f(x)=2(1-x)x-1,,(0≤x≤1)(1<x≤2).(1)解不等式:f(x)≤x;(2)设集合A={0,1,2},对任意x

题目简介

设n为正整数,规定:fn(x)=f{f[…f(x)…]}n个f,已知f(x)=2(1-x)x-1,,(0≤x≤1)(1<x≤2).(1)解不等式:f(x)≤x;(2)设集合A={0,1,2},对任意x

题目详情

设n为正整数,规定:fn(x)=
f{f[…f(x)…]}
n个f
,已知f(x)=
2(1-x)
x-1
(0≤x≤1)
(1<x≤2)

(1)解不等式:f(x)≤x;
(2)设集合A={0,1,2},对任意x∈A,证明:f3(x)=x;
(3)探求f2009(
8
9
)

(4)若集合B={x|f12(x)=x,x∈[0,2]},证明:B中至少包含有8个元素.
题型:解答题难度:中档来源:宝山区模拟

答案

(1)①当0≤x≤1时,由2(1-x)≤x得,x≥class="stub"2
3

class="stub"2
3
≤x≤1.
②当1<x≤2时,因x-1≤x恒成立.
∴1<x≤2.
由①,②得,f(x)≤x的解集为{x|class="stub"2
3
≤x≤2}.
(2)∵f(0)=2,f(1)=0,f(2)=1,
∴当x=0时,f3(0)=f(f(f(0)))=f(-f(2))=f(1)=0;
当x=1时,f3(1)=f(f(f(1)))=f(f(0))=f(2)=1;
当x=2时,f3(2)=f(f(f(2)))=f(f(1))=f(0)=2.
即对任意x∈A,恒有f3(x)=x.
(3)f1(class="stub"8
9
)=2(1-class="stub"8
9
)=class="stub"2
9

f2(class="stub"8
9
)=f(f(class="stub"8
9
))=f(class="stub"2
9
)=class="stub"14
9

f3(class="stub"8
9
)=f(f2(class="stub"8
9
))=f(class="stub"14
9
)=class="stub"14
9
-1=class="stub"5
9

f4(class="stub"8
9
)=f(f3(class="stub"8
9
))=f(class="stub"5
9
)=2(1-class="stub"5
9
)=class="stub"8
9

一般地,f4k+r(class="stub"8
9
)=fr(class="stub"8
9
)
(k,r∈N).
f2008(class="stub"8
9
)=f0(class="stub"8
9
)=class="stub"8
9

(4)由(1)知,f(class="stub"2
3
)=class="stub"2
3
,∴fn(class="stub"2
3
)=class="stub"2
3
,则f12(class="stub"2
3
)=class="stub"2
3
,∴class="stub"2
3
∈B.
由(2)知,对x=0、1、2,恒有f3(x)=x,∴f12(x)=x,则0、1、2∈B.
由(3)知,对x=class="stub"8
9
class="stub"2
9
class="stub"14
9
class="stub"5
9
,恒有f12(x)=x,∴class="stub"8
9
class="stub"2
9
class="stub"14
9
class="stub"5
9
∈B.
综上所述class="stub"2
3
、0、1、2、class="stub"8
9
class="stub"2
9
class="stub"14
9
class="stub"5
9
∈B.
∴B中至少含有8个元素.

更多内容推荐