定义域为{x|x≠0}的函数f(x)满足f(xy)=f(x)+f(y),(x,y∈R)且f(8)=3,则f(2)=()A.12B.14C.38D.316-数学

题目简介

定义域为{x|x≠0}的函数f(x)满足f(xy)=f(x)+f(y),(x,y∈R)且f(8)=3,则f(2)=()A.12B.14C.38D.316-数学

题目详情

定义域为{x|x≠0}的函数f(x)满足f(xy)=f(x)+f(y),(x,y∈R)且f(8)=3,则f(
2
)
=(  )
A.
1
2
B.
1
4
C.
3
8
D.
3
16
题型:单选题难度:偏易来源:不详

答案

∵函数f(x)满足f(xy)=f(x)+f(y),(x,y∈R)且f(8)=3,
∴f(8)=f(4)+f(2)=3f(2)=3 (f(
2
) + f(
2
)
)=6f(
2
)
=3,
f(
2
)
=class="stub"1
2

故选A.

更多内容推荐