已知曲线f(x)=x2.(1)求曲线f(x)在(1,1)点处的切线l的方程;(2)求由曲线f(x)、直线x=0和直线l所围成图形的面积.-高二数学

题目简介

已知曲线f(x)=x2.(1)求曲线f(x)在(1,1)点处的切线l的方程;(2)求由曲线f(x)、直线x=0和直线l所围成图形的面积.-高二数学

题目详情

已知曲线f(x)=x2
(1)求曲线f(x)在(1,1)点处的切线l的方程;
(2)求由曲线f(x)、直线x=0和直线l所围成图形的面积.
题型:解答题难度:中档来源:不详

答案

(1)∵f(x)=x2,∴f′(x)=2x,故f′(1)=2
∴曲线f(x)在(1,1)点处的切线l的方程为y-1=2(x-1),即2x-y-1=0;
(2)根据题意得S=
10
(x2-2x+1)dx
=(class="stub"1
3
x3-x2+x
|10
=class="stub"1
3

更多内容推荐