设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)-|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|-g(

题目简介

设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)-|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|-g(

题目详情

设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是(  )
A.f(x)+|g(x)|是偶函数B.f(x)-|g(x)|是奇函数
C.|f(x)|+g(x)是偶函数D.|f(x)|-g(x)是奇函数
题型:单选题难度:偏易来源:广东

答案

∵函数f(x)和g(x)分别是R上的偶函数和奇函数,
则|g(x)|也为偶函数,
则f(x)+|g(x)|是偶函数,故A满足条件;
f(x)-|g(x)|是偶函数,故B不满足条件;
|f(x)|也为偶函数,
则|f(x)|+g(x)与f(x)|-g(x)的奇偶性均不能确定
故选A

更多内容推荐