如图所示,在边长为60cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?-高二数学

题目简介

如图所示,在边长为60cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?-高二数学

题目详情

如图所示,在边长为60cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?

题型:解答题难度:中档来源:同步题

答案

解:设箱子的底边长为xcm,则箱子高h=
箱子容积V=V(x)=x2h=(0<x<60),
求V(x)的导数,得V′(x)==0,
解得x1=0(不合题意,舍去),x2=40,
当x在(0,60)内变化时,导数V′(x)的正负如下表:
 
因此在x=40处,函数V(x)取得极大值,并且这个极大值就是函数V(x)的最大值,
将x=40代入V(x)得最大容积V=402×
答:箱子底边长取40cm时,容积最大,最大容积为16000cm3。

更多内容推荐