设函数f(x)=x2+ax+2lnx,a∈R,已知函数f(x)在x=1处有极值,(1)求实数a的值;(2)当x∈[,e](其中e是自然对数的底数)时,证明:e(e-x)(e+x-6)+4≥x4;(3)

题目简介

设函数f(x)=x2+ax+2lnx,a∈R,已知函数f(x)在x=1处有极值,(1)求实数a的值;(2)当x∈[,e](其中e是自然对数的底数)时,证明:e(e-x)(e+x-6)+4≥x4;(3)

题目详情

设函数f(x)=x2+ax+2lnx,a∈R,已知函数f(x)在x=1处有极值,
(1)求实数a的值;
(2)当x∈[,e](其中e是自然对数的底数)时,证明:e(e-x)(e+x-6)+4≥x4
(3)证明:对任意的n>1,n∈N*,不等式恒成立。
题型:解答题难度:偏难来源:四川省模拟题

答案

解:(1)由题知f′(x)=x+a+的一个根为1,
∴f′(1)=0,
∴1+a+2=0,即a=-3;
(2)

由f′(x)=,解得x>2或0<x<1,
由f′(x)=,解得1<x<2,

∴函数f(x)的单调递增区间为、(2,e),单调递减区间为(1,2),
∴当时,f(x)的极大值为

∴当时,

即e2-6e+4≥x2-6x+4lnx,
即e2-x2+6x-6e+4≥41nx,
即(e-x)(e+x-6)+4≥4lnx,


(3)由(2)可知,函数f(x)的单调递减区间为(1,2),单调递增区间为(2,+∞),
∴当x∈(1,+∞)时,函数f(x)在x=2处取得最小值2ln2-4,





……

把上述各式相加,变形得:



∴对任意的n>1,n∈N*,不等式恒成立。

更多内容推荐