如图,在△ABC中,∠ABC=90°,BM平分∠ABC交AC于点M,ME⊥AB于点E,MF⊥BC于点F.试判断四边形EBFM的形状,并加以证明.-数学

题目简介

如图,在△ABC中,∠ABC=90°,BM平分∠ABC交AC于点M,ME⊥AB于点E,MF⊥BC于点F.试判断四边形EBFM的形状,并加以证明.-数学

题目详情

如图,在△ABC中,∠ABC=90°,BM平分∠ABC交AC于点M,ME⊥AB于点E,MF⊥BC于点F.试判断四边形EBFM的形状,并加以证明.360优课网
题型:解答题难度:中档来源:不详

答案

四边形EBFM是正方形.
理由:∵BM平分∠ABC交AC于点M,ME⊥AB于点E,MF⊥BC于点F,
∴ME=MF,
∵∠ABC=90°,∠MEB=90°,∠MFB=90°,
∴四边形EBFM是矩形(有三个角是直角的四边形是矩形),
∴四边形EBFM是正方形(一组邻边相等的矩形是正方形).

更多内容推荐