![]() (1)证明:∵∠MAN=120°,AC平分∠MAN, ∴∠CAD=∠CAB=60°. 又∠ABC=∠ADC=90°, ∴AD=
∴AB+AD=AC. (2)结论仍成立.理由如下: 作CE⊥AM、CF⊥AN于E、F.则∠CED=∠CFB=90°, ∵AC平分∠MAN, ∴CE=CF. ∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180° ∴∠CDE=∠ABC, 在△CDE和△CBF中,
∴△CDE≌△CBF(AAS), ∴DE=BF. ![]() ∵∠MAN=120°,AC平分∠MAN, ∴∠MAC=∠NAC=60°,∴∠ECA=∠FCA=30°, 在Rt△ACE与Rt△ACF中,则有AE=
则AD+AB=AD+AF+BF=AD+AF+DE=AE+AF=
∴AD+AB=AC. |
题目简介
已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中
题目详情
(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.