优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.
对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.
题目简介
对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.
题目详情
对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.设函数f(x)的定义域为R
+
,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(2
n
)(n∈N*);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求f(x)在区间[1,2
n
)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①f(2
-n
)与2
-n
+2(n∈N*);
②f(x)与2x+2(x∈(0,1]).
题型:解答题
难度:中档
来源:黄埔区一模
答案
(1)若(1,1)是f(x)的一个“P数对”,即f(2x)=f(x)+1恒成立,整理f(2x)-f(x)=1,令x=2k,则f(2k+1)-f(2k)=1,
所以f(2),f(4),f(8),…f(2n)构成公差为1的等差数列,
令x=1得f(2)=f(1)+1=4,所以f(2n)=4+(n-1)×1=n+3
(2)当x∈[1,2)时f(x)=k-|2x-3|,令x=1,则f(1)=k-1=3,解得k=4,即当x∈[1,2)时f(x)=4-|2x-3|,所以f(x)在[1,2)上的取值范围是[3,4],
又(-2,0)是f(x)的一个“P数对”,即f(2x)=-2f(x)恒成立,当x∈[2k-1,2k)(k∈N*)时,
class="stub"x
2
k-1
∈[1,2)
f(x)=-2f(
class="stub"x
2
)=4f(
class="stub"x
4
)=…=(-2)k-1f(
class="stub"x
2
k-1
),
故当k为奇数时,f(x)在[2k-1,2k)上的取值范围是[3×2k-1,2k+1]
当k为偶数时,f(x)在[2k-1,2k)上的取值范围是[-2k+1,-3×2k-1]
所以当n=1时,f(x)在区间[1,2n)上的最大值为4,最小值为3.
当n为不小于3的奇数时,f(x)在区间[1,2n)上的最大值为2n+1,最小值为-2n
n为不小于2的偶数时,f(x)在区间[1,2n)上的最大值为2n,最小值为-2n+1.
(3)(2,-2)是f(x)的一个“类P数对”,可知f(2x)≥2f(x)-2恒成立.即f(x)
≤
class="stub"1
2
f(2x)+1恒成立.
令x=
class="stub"1
2
k
,则得f(
class="stub"1
2
k
)≤
class="stub"1
2
f(
class="stub"1
2
k-1
)+1
即
f(
class="stub"1
2
k
)
-2
≤
class="stub"1
2
[f(
class="stub"1
2
k-1
)-2]
对一切k∈N*恒成立.
所以
f(
class="stub"1
2
n
)-2
≤
class="stub"1
2
[f(
class="stub"1
2
n-1
)-2]
≤
class="stub"1
4
[f(
class="stub"1
2
k-2
)-2]
≤…
≤
class="stub"1
2
n
[f(1)-2]
=
class="stub"1
2
n
故f(2-n)≤2-n+2(n∈N*);
若x∈(0,1]),则必存在n∈N*,使得∈(
class="stub"1
2
n
,
class="stub"1
2
n-1
],由f(x)是增函数,故f(x)≤f(
class="stub"1
2
n-1
)≤
class="stub"1
2
n-1
+2
又2x+2>2×
class="stub"1
2
x
+2=
class="stub"1
2
x-1
+2,故有f(x)<2x+2
上一篇 :
定义在R上的函数f(x)在区间(-∞
下一篇 :
已知函数,若实数满足,则()A.-2B.-1C.0
搜索答案
更多内容推荐
设f(x)是R上的偶函数,且在[0,+∞)上单调递增,若a<b<0,则()A.f(a)<f(b)B.f(a)>f(b)C.f(a)=f(b)D.无法确定-高一数学
已知函数(1)计算的值,据此提出一个猜想,并予以证明;(2)证明:除点(2,2)外,函数的图像均在直线的下方.-高三数学
下列函数中,在其定义域内,既是奇函数又是减函数的是().A.B.C.D.-高三数学
函数y=22x-2x+2+7,定义域为[m,n],值域为[3,7],则n+m的最大值______.-数学
定义域为的函数,其导函数为.若对,均有,则称函数为上的梦想函数.(Ⅰ)已知函数,试判断是否为其定义域上的梦想函数,并说明理由;(Ⅱ)已知函数(,)为其定义域上的梦想函数,求-高三数学
设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值;(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积;(3)写出(-∞,+
函数有如下命题:(1)函数图像关于轴对称.(2)当时,是增函数,时,是减函数.(3)函数的最小值是.(4)当或时.是增函数.(5)无最大值,也无最小值.其中正确命题的序号.-高三数学
已知函数f(x)=ex,对于曲线y=f(x)上横坐标成等差数列的三个点A,B,C,给出以下判断:①△ABC一定是钝角三角形②△ABC可能是直角三角形③△ABC可能是等腰三角形④△ABC不可能是等腰三角
若,其中,则的取值范围是.-高一数学
若函数在区间上单调递减,则实数的取值范围为______.-高二数学
函数(且)的图象经过点,函数(且)的图象经过点,则下列关系式中正确的是()A.B.C.D.-高三数学
设函数.(1)若在其定义域内为单调递增函数,求实数的取值范围;(2)设,且,若在上至少存在一点,使得成立,求实数的取值范围.-高三数学
函数的递减区间是__________.-高三数学
若是任意非零常数,对于函数有以下5个命题:①是的周期函数的充要条件是;②是的周期函数的充要条件是;③若是奇函数且是的周期函数,则的图形关于直线对称;④若关于直线对称,且-高三数学
已知函数,则.-高三数学
已知函数:(1)若函数在区间上存在零点,求实数的取值范围;(2)问:是否存在常数,当时,的值域为区间,且的长度为.-高三数学
(理)(本小题满分12分)已知y=f(x)是偶函数,当x>0时,,且当时,恒成立,求的最小值.-高三数学
函数在区间上的最大值与最小值分别为、,则.-高二数学
函数的最小值为.-数学
奇函数的定义域为,若在[0,2]上单调递减,且,则实数m的范围是_______.-高二数学
若二次函数满足,且,则实数的取值范围是_________.-高二数学
现有两个命题:(1)若,且不等式恒成立,则的取值范围是集合;(2)若函数,的图像与函数的图像没有交点,则的取值范围是集合;则以下集合关系正确的是()A.B.C.D.-高三数学
定义域为的偶函数满足对,有,且当时,,若函数在上至少有三个零点,则的取值范围是()A.B.C.D.-高三数学
函数的最大值为()A.B.C.D.-高三数学
点M(a,b)在函数y=1x的图象上,点N与点M关于y轴对称且在直线x-y+3=0上,则函数f(x)=abx2+(a+b)x-1在区间[-2,2)上()A.既没有最大值也没有最小值B.最小值为-3,无
已知函数f(x)=3x,x≤1-x,x>1,则f[f(2)]=______.-数学
已知定义在上的奇函数,满足,且在区间上是增函数,则().A.B.C.D.-高三数学
已知函数.(Ⅰ)当时,求曲线在原点处的切线方程;(Ⅱ)当时,讨论函数在区间上的单调性;(Ⅲ)证明不等式对任意成立.-高三数学
已知函数(1)当时,讨论函数的单调性:(2)若函数的图像上存在不同两点,设线段的中点为,使得在点处的切线与直线平行或重合,则说函数是“中值平衡函数”,切线叫做函数的“中值平-高三数学
定义在R上的函数在(-∞,2)上是增函数,且的图象关于轴对称,则()A.B.C.D.-高三数学
若是偶函数,且当时,f(x)=x-1,则f(x-1)<0的解集是()A.{x|-1<x<0}B.{x|x<0或1<x<2}C.{x|0<x<2}D.{x
已知函数,试判断此函数在上的单调性,并求此函数在上的最大值和最小值.-高三数学
已知y=f(x)是偶函数,而y=f(x+1)是奇函数,且对任意0≤x≤1,都有f′(x)≥0,则的大小关系是[]A.c<a<bB.c<b<aC.a<c<bD.a<b<c-高三数学
设函数()(1)写出函数的定义域;(2)讨论函数的单调性.-高二数学
已知定义在R上的函数满足,,且在区间上是减函数.若方程在区间上有两个不同的根,则这两根之和为()A.±8B.±4C.±6D.±2-高三数学
若是奇函数,且在区间上是单调增函数,又,则的解集为.-高二数学
函数f(x)=log5(2x+1)的单调增区间是____________.-高二数学
对于函数f(x)(x∈D),若x∈D时,恒有>成立,则称函数是D上的J函数.(Ⅰ)当函数f(x)=mlnx是J函数时,求m的取值范围;(Ⅱ)若函数g(x)为(0,+∞)上的J函数,试比较g(a)与g(
函数f(x)=2x2-mx+2当x∈[-2,+∞)时是增函数,则m的取值范围是()A.(-∞,+∞)B.[8,+∞)C.(-∞,-8]D.(-∞,8]-高二数学
求函数,的值域.-高一数学
已知函数,则下列结论正确的是()A.,为奇函数且为上的减函数B.,为偶函数且为上的减函数C.,为奇函数且为上的增函数D.,为偶函数且为上的增函数-高三数学
已知函数f(x)=x+1-ax在(3,+∞)上单调递减,求实数a的取值范围.-数学
已知函数,构造函数的定义如下:当时,,当时,,则()A.有最小值0,无最大值B.有最小值-1,无最大值C.有最大值1,无最小值D.无最大值,也无最小值-高三数学
已知函数(1)求的单调区间;(2)若关于的方程有3个不同实根,求实数的取值范围;(3)已知当恒成立,求实数的取值范围.-高二数学
已知函数是定义在实数集R上的奇函数,且当时成立(其中的导函数),若,,则的大小关系是()A.B.C.D.-高三数学
若函数y=a2x+2ax-1(a>0且a≠1)在[-1,1]上的最大值为23,求实数a的值.-数学
已知函数.(Ⅰ)求函数的单调递增区间;(Ⅱ)当时,在曲线上是否存在两点,使得曲线在两点处的切线均与直线交于同一点?若存在,求出交点纵坐标的取值范围;若不存在,请说明理由;-高三数学
定义在R上的函数,满足,,若且,则=____.-高三数学
已知函数的定义域是,是的导函数,且在内恒成立.求函数的单调区间;若,求的取值范围;(3)设是的零点,,求证:.-高三数学
已知在定义域上是减函数,且则的取值范围是_____________-高一数学
返回顶部
题目简介
对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.
题目详情
(1)若(1,1)是f(x)的一个“P数对”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求f(x)在区间[1,2n)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①f(2-n)与2-n+2(n∈N*);
②f(x)与2x+2(x∈(0,1]).
答案
所以f(2),f(4),f(8),…f(2n)构成公差为1的等差数列,
令x=1得f(2)=f(1)+1=4,所以f(2n)=4+(n-1)×1=n+3
(2)当x∈[1,2)时f(x)=k-|2x-3|,令x=1,则f(1)=k-1=3,解得k=4,即当x∈[1,2)时f(x)=4-|2x-3|,所以f(x)在[1,2)上的取值范围是[3,4],
又(-2,0)是f(x)的一个“P数对”,即f(2x)=-2f(x)恒成立,当x∈[2k-1,2k)(k∈N*)时,
f(x)=-2f(
故当k为奇数时,f(x)在[2k-1,2k)上的取值范围是[3×2k-1,2k+1]
当k为偶数时,f(x)在[2k-1,2k)上的取值范围是[-2k+1,-3×2k-1]
所以当n=1时,f(x)在区间[1,2n)上的最大值为4,最小值为3.
当n为不小于3的奇数时,f(x)在区间[1,2n)上的最大值为2n+1,最小值为-2n
n为不小于2的偶数时,f(x)在区间[1,2n)上的最大值为2n,最小值为-2n+1.
(3)(2,-2)是f(x)的一个“类P数对”,可知f(2x)≥2f(x)-2恒成立.即f(x)≤
令x=
即f(
所以f(
若x∈(0,1]),则必存在n∈N*,使得∈(
又2x+2>2×