设f(x)是R上的偶函数,且在[0,+∞)上单调递增,若a<b<0,则()A.f(a)<f(b)B.f(a)>f(b)C.f(a)=f(b)D.无法确定-高一数学

题目简介

设f(x)是R上的偶函数,且在[0,+∞)上单调递增,若a<b<0,则()A.f(a)<f(b)B.f(a)>f(b)C.f(a)=f(b)D.无法确定-高一数学

题目详情

设f(x)是R上的偶函数,且在[0,+∞)上单调递增,若a<b<0,则(   )
A.f(a)<f(b)B.f(a)>f(b)
C.f(a)=f(b)D.无法确定
题型:单选题难度:偏易来源:不详

答案

B
因为设f(x)是R上的偶函数,且在[0,+∞)上单调递增,若a<b<0,则在对称区间单调递减,因此选B

更多内容推荐