如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=,AD=4.(1)求BC的长;(2)求tan∠DAE的值.-九年级数学

题目简介

如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=,AD=4.(1)求BC的长;(2)求tan∠DAE的值.-九年级数学

题目详情

如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=,AD=4.

(1)求BC的长;
(2)求tan∠DAE的值.
题型:解答题难度:中档来源:不详

答案

(1);(2).

试题分析:(1)先由三角形的高的定义得出∠ADB=∠ADC=90°,再解Rt△ADC,得出DC=4;解Rt△ADB,得出AB=6,根据勾股定理求出BD=2,然后根据BC=BD+DC即可求解;
(2)先由三角形的中线的定义求出CE的值,则DE=CE-CD,然后在Rt△ADE中根据正切函数的定义即可求解.
试题解析:(1)在△ABC中,∵AD是BC边上的高,
∴∠ADB=∠ADC=90°.
在△ADC中,∵∠ADC=90°,∠C=45°,AD=4,
∴DC=AD=4.
在△ADB中,∵∠ADB=90°,sinB=,AD=4,
∴AB= 
∴BD=
∴BC=BD+DC=
(2)∵AE是BC边上的中线,
∴CE=BC=
∴DE=CE-CD=
∴tan∠DAE=
考点: 解直角三角形.

更多内容推荐