已知an=∫n0(2x+1)dx,数列{1an}的前n项和为Sn,bn=n-33,n∈N*,则bnSn的最小值为______.-数学

题目简介

已知an=∫n0(2x+1)dx,数列{1an}的前n项和为Sn,bn=n-33,n∈N*,则bnSn的最小值为______.-数学

题目详情

已知an=
n0
(2x+1)dx,数列{
1
an
}的前n项和为Sn,bn=n-33,n∈N*,则bnSn的最小值为______.
题型:填空题难度:中档来源:葫芦岛模拟

答案

an=
n0
(2x+1)dx=(x2+x)
|n0
=n2+n
class="stub"1
an
=class="stub"1
n2+n
=class="stub"1
n(n+1)
=class="stub"1
n
-class="stub"1
n+1

∴数列{class="stub"1
an
}的前n项和为Sn=class="stub"1
a1
+class="stub"1
a2
+…+class="stub"1
an
=1-class="stub"1
2
+class="stub"1
2
-class="stub"1
3
+…+class="stub"1
n
-class="stub"1
n+1
=1-class="stub"1
n+1
=class="stub"n
n+1

又bn=n-33,n∈N*,
则bnSn=class="stub"n
n+1
×(n-33)=n+1+class="stub"34
n+1
-35≥2
34
-35,等号当且仅当n+1+class="stub"34
n+1
,即n=
34
-1时成立,
由于n是正整数,且
34
-1∈(4,5),后面求n=4,n=5时bnSn的值
当n=4时,bnSn=class="stub"n
n+1
×(n-33)=-class="stub"106
5
;当n=5时,bnSn=class="stub"n
n+1
×(n-33)=-class="stub"70
3

由于-class="stub"106
5
>-class="stub"70
3
,故bnSn的最小值为-class="stub"70
3

故答案为-class="stub"70
3

更多内容推荐