优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 如图所示,在坐标系xOy内有一半径为a的圆形区域,圆心坐标为O1(a,0),圆内分布有垂直纸面向里的匀强磁场.在直线y=a的上方和直线x=2a的左侧区域内,有一沿y轴负方向的匀强电-物理
如图所示,在坐标系xOy内有一半径为a的圆形区域,圆心坐标为O1(a,0),圆内分布有垂直纸面向里的匀强磁场.在直线y=a的上方和直线x=2a的左侧区域内,有一沿y轴负方向的匀强电-物理
题目简介
如图所示,在坐标系xOy内有一半径为a的圆形区域,圆心坐标为O1(a,0),圆内分布有垂直纸面向里的匀强磁场.在直线y=a的上方和直线x=2a的左侧区域内,有一沿y轴负方向的匀强电-物理
题目详情
如图所示,在坐标系xOy内有一半径为a的圆形区域,圆心坐标为O
1
(a,0),圆内分布有垂直纸面向里的匀强磁场.在直线y=a的上方和直线x=2a的左侧区域内,有一沿y轴负方向的匀强电场,场强大小为E.一质量为m、电荷量为+q(q>0)的粒子以速度v从O点垂直于磁场方向射入,当速度方向沿x轴正方向时,粒子恰好从O
1
点正上方的A点射出磁场,不计粒子重力.
(1)求磁感应强度B的大小;
(2)粒子在第一象限内运动到最高点时的位置坐标;
(3)若粒子以速度v从O点垂直于磁场方向射入第一象限,当速度方向沿x轴正方向的夹角θ=30°时,求粒子从射入磁场到最终离开磁场的时间t.
题型:问答题
难度:中档
来源:新余二模
答案
(1)设粒子在磁场中做圆运动的轨迹半径为R,根据牛顿第二定律,有
qvB=
m
v
2
R
粒子自A点射出,由几何知识
R=a
解得
B=
class="stub"mv
qa
即磁感应强度B的大小为
class="stub"mv
qa
.
(2)粒子从A点向上在电场中做匀减运动,
设在电场中减速的距离为y1
由动能定理,得到
-Eq
y
1
=0-
class="stub"1
2
m
v
2
解得
y
1
=
m
v
2
2Eq
所以在电场中最高点的坐标为(a,
a+
m
v
2
2Eq
).
(3)粒子的运动轨迹如图
粒子在磁场中做圆运动的周期
T=
class="stub"2πa
v
粒子从磁场中的P点射出,因磁场圆和粒子的轨迹圆的半径相等,OO1PO2构成菱形,故粒子从P点的出射方向与y轴平行,粒子由O到P所对应的圆心角为:θ1=60°
由几何知识可知,粒子由P点到x轴的距离
S=acosθ
粒子在电场中做匀变速运动,在电场中运动的时间
t
1
=
class="stub"2mv
qE
粒子由P点第2次进入磁场,
由Q点射出,PO1QO3 构成菱形,
由几何知识可知Q点在x轴上,粒子由P到Q的偏向角为:θ2=120°
则 θ1+θ2=π
粒子先后在磁场中运动的总时间
t
2
=
class="stub"T
2
粒子在场区之间做匀速运动的时间
t
3
=
2(a-S)
v
解得粒子从射入磁场到最终离开磁场的时间
t=
t
1
+
t
2
+
t
3
=
(2+π-
3
)a
v
+
class="stub"2mv
qE
故粒子从射入磁场到最终离开磁场的时间t为
(2+π-
3
)a
v
+
class="stub"2mv
qE
.
上一篇 :
如图所示,一长度为R的轻质细绳
下一篇 :
如图所示,ABCDE是由三部分光滑
搜索答案
更多内容推荐
银河系恒星中大约有四分之一是双星.某双星系统由星球A和B组成,两星球在相互之间的万有引力作用下绕两者连线上某一定点P做匀速圆周运动.已知A和B的质量之比为mA:mB=1:2,两星-物理
我们知道,反粒子与正粒子有相同的质量,却带有等量的异号电荷.物理学家推测,既然有反粒子存在,就可能有由反粒子组成的反物质存在.1998年6月,我国科学家研制的阿尔法磁谱-物理
如图,一束电子以大小不同的速率沿图示方向飞人一正方形的匀强磁场区,对从油边离开磁场的电子,下列判断正确的是()A.从a点离开的电子速度最小B.从a点离开的电子在磁场中运动-物理
如图所示,质量为m、带电量为+q的三个相同的带电小球A、B、C,从同一高度以初速度v0水平抛出,B球处于竖直向下的匀强磁场中,C球处于垂直纸面向里的匀强电场中,它们落地的时-物理
如图所示,在y>0的区域内有沿y轴正方向的匀强电场,在y<0的区域内有垂直坐标平面向里的匀强磁场.一电子(质量为m、电量为e)从y轴上A点以沿x轴正方向的初速度v0开始运动.当电子-物理
如图所示,一水平圆盘绕过圆心的竖直轴转动,圆盘边缘有一质量m=1.0kg的小滑块.当圆盘转动的角速度达到某一数值时,滑块从圆盘边缘滑落,经光滑的过渡圆管进入轨道ABC.已知-物理
如图所示,竖直平面内的3/4圆弧形光滑轨道半径为R,A端与圆心O等高,AD为水平面,B端在O的正上方,一个小球在A点正上方由静止释放,自由下落至A点进入圆轨道并恰能到达B点.求-物理
如图所示,绝缘光滑的半圆轨道位于竖直平面,竖直向下的匀强电场正穿过其中,在轨道的上缘有一个质量为m,带电荷量为+q的小球,由静止开始沿轨道运动.下列说法正确的是()A.小-物理
据了解,08北京奥运体操全能比赛是按照“自、鞍、吊、跳、双、单”的顺序进行,单杠列为全能比赛的最后一项.号称“世界体操全能王”的杨威(1980.2.8出生,身高:1.60米体重:53-物理
如图所示,滑块在恒定外力F作用下从水平轨道上的A点由静止出发到B点时撤去外力,又沿竖直面内的光滑半圆形轨道运动,且恰能通过轨道最高点C,AB距离为S,轨道半径为R,求滑块-物理
有一辆质量为m=8.0×102kg的小汽车驶上圆弧半径为R=50m的拱桥.汽车到达桥顶时速度为v=10m/s,求汽车对桥面的压力(取g=10m/s2)-物理
如图,在竖直面内的坐标系xoy中,x轴上方存在竖直向下的匀强电场,电场强度E=12N/C,在x轴下方存在垂直纸面向里的匀强磁场,磁感应强度B=2T,一带电量为q=+3×10-4c、质量为m-物理
某一发达国家的宇航员完成了对火星表面的科学考察任务,乘坐返回舱返回围绕火星做圆周运动的轨道舱,如图所示.为了安全,返回舱与轨道舱对接时,必须具有相同的速度.已知返回-物理
如图所示,圆形玻璃平板半径为r,离水平地面的高度为h,一质量为m的小木块放置在玻璃板的边缘,随玻璃板一起绕圆心O在水平面内做匀速圆周运动.若匀速圆周运动的周期为T,木块-物理
如图所示,空间存在一个半径为R0的圆形匀强磁场区域,磁场的方向垂直于纸面向里,磁感应强度的大小为B.有一个粒子源在纸面内沿各个方向以一定速率发射大量粒子,粒子的质量为-物理
如图所示,一个质量为m、电荷量为q的正离子,在D处沿图示方向以一定的速度射入磁感应强度为B的匀强磁场中,此磁场方向是垂直纸面向里.结果离子正好从距A点为d的小孔C沿垂直于-物理
受控核聚变装置中有极高的温度,因而带电粒子将没有通常意义上的“容器”可装,而是由磁场约束带电粒子运动使之束缚在某个区域内.现按下面的简化条件来讨论这个问题:如图所示的-物理
地球赤道上有一物体甲随地球的自转而做圆周运动,所需的向心力为F1,向心加速度为a1,线速度为v1,角速度为ω1,;随绕地球表面附近做圆周运动的人造卫星一起运动的物体乙所需-物理
如图所示,在真空区域内,有宽度为L的匀强磁场,磁感应强度为B,磁场方向垂直纸面向里,MN、PQ是磁场的边界.质量为m,带电量为-q的粒子,先后两次沿着与MN夹角为θ(0<θ<90°)的-物理
B组:空间存在一匀强磁场B,其方向垂直纸面向里,另有一个点电荷+Q的电场,如图所示,一带电-q的粒子以初速度v0从某处垂直电场、磁场入射,初位置到点电荷的距离为r,则粒子在-物理
如图所示,线段OA=2AB,A、B为两个质量相等的小球,当它们绕O点在光滑的水平桌面上以相同的角速度转动时,两线段拉力Fab:Fob为[]A.3:2B.2:3C.5:3D.2:1-高三物理
载人飞船在起飞阶段,宇航员的血液处于超重状态,严重时会发生黑视,甚至危及生命.(1)假设飞船起飞时的加速度大小为a=60m/s2,方向竖直向上,宇航员躺在飞船内的水平躺椅上,-物理
如图所示,一个质量m=2.0×10-11kg、电荷量q=1.0×10-5C、重力忽略不计的带电微粒,从静止开始经电压U1=100V的电场加速后,水平进入两平行金属板间的偏转电场,偏转电场的电-物理
我国首个月球探测计划“嫦娥工程”将分三个阶段实施,大约用十年左右时间完成.物理老师要求同学用所学的知识,设计一个测量月球密度的方案,交给我国将来登月的宇航员来完成.某-物理
汽车与路面的动摩擦因数为μ,公路某转弯处半径为R(设最大静摩擦力等于滑动摩擦力),问:(1)若路面水平,汽车转弯不发生侧滑,汽车速度不能超过多少?(2)若将公路转弯处路面设计-物理
一组航天员乘坐飞船前往位于离地球表面高度为h的圆形轨道上的哈勃太空望远镜H.机组人员使飞船S进入与H相同的轨道并关闭火箭发动机,如图所示.M为地球质量,R为地球半径,g为-物理
如图所示,在y≤53×10-2m的空间有垂直纸面向里的匀强磁场,磁感应强度B=4×10-3T,在y≤0空间同时存在沿y轴负方向的匀强电场,电场强度E=403V/m.一个质量m=6.4×10-27kg、
如图所示,用轻绳系住质量为m的小球,使小球在竖直平面内绕点O做圆周运动.小球做圆周运动的半径为L.小球在最高点A的速度大小为v.求:(1)小球在最高点A时,绳子上的拉力大小;-物理
长为L的轻绳的一端固定在O点,另一端栓一个质量为m的小球.先令小球以O为圆心,L为半径在竖直平面内做圆周运动,小球能通过最高点,如图所示.g为重力加速度.则()A.小球通过最-物理
如图所示,在直角坐标系的原点O处有一放射源,向四周均匀发射速度大小相等、方向都平行于纸面的带电粒子.在放射源右边有一很薄的挡板,挡板与xoy平面交线的两端M、N与原点O正-物理
光滑水平面上放着质量mA=lkg的物块A与质量mB=2kg的物块B,A与B均可视为质点,A靠在竖直墙壁上,A、B间夹一个被压缩的轻弹簧(弹簧与A、B均不拴接),用手挡住B不动,此时弹簧弹-物理
一个质量为M的物体在水平转盘上,距离转轴的距离为r,当转盘的转速为n时,物体相对于转盘静止,如果转盘的转速增大时,物体仍然相对于转盘静止,则下列说法中正确的是[]A.物-高一物理
如图所示,放在水平地面(粗糙)上的光滑直轨道AB和半圆形的光滑轨道CED处于同一竖直平面内,两轨道与水平地面平滑连接,其端点B和C相距1.2m,半圆轨道两端点的连线CD与地面垂-物理
如图(a)所示,重10N的、粗细均匀的金属杆可以绕O点在竖直平面内自由转动,一拉力、位移传感器竖直作用在杆上,并能使杆始终保持水平平衡.该传感器显示其拉力F与作用点到O点距-物理
如图所示,一个质量为m的小球由两根细绳拴在竖直转轴上的A、B两处,AB间距为L,A处绳长为2L,B处绳长为L,两根绳能承受的最大拉力均为2mg,转轴带动小球转动.则:(1)当B处绳子-物理
如图所示,在真空中,半径为d的虚线所围的圆形区域内只存在垂直纸面向外的匀强磁场,在磁场右侧有一对平行金属板M和N,两板间距离也为d,板长为l.板间存在匀强电场,两板间的-物理
如图所示,真空中O点处固定一点电荷Q,同时在O点通过绝缘细线悬挂一带电荷量为q质量为m的小球,开始时细线与小球处在水平位置且静止,释放后小球摆到最低点时,细线的拉力为-物理
质量为25kg的小孩坐在秋千上,小孩离系绳子的横梁2.5m.如果秋千摆到最低点时,小孩运动速度的大小是5m/s,她对秋千的压力是多大?-物理
如图所示,在xoy坐标平面的第一象限内有一沿y轴正方向的匀强电场,在第四象限内有一垂直于平面向里的匀强磁场,现有一质量为m、电量为+q的粒子(重力不计)从坐标原点O射入磁场-物理
如图所示,在水平地面正上方有范围足够大的匀强磁场和匀强电场(图中未画出电场线).已知磁场的磁感应强度为B,方向水平并垂直纸面向里.一质量为m、带电量为-q的带电微粒在此区-物理
最近,科学家在望远镜中看到太阳系外某一恒星有一行星,并测得它围绕该恒星运行一周所用的时间为1200年,它与该恒星的距离为地球到太阳距离的100倍.假定该行星绕恒星运行的轨-物理
半径为R的水平圆盘固定一个质量为m的物体,当盘以角速度ω绕O轴做匀速圆周运动时,物体的线速度为v,则物体受到的向心力大小为()A.mv2RB.mω2RC.mg-mv2RD.mωv-物理
如图,一质量为m=10kg的物体,由1/4光滑圆弧轨道上端从静止开始下滑,到达底端后沿水平面向右滑动1m距离后停止.已知轨道半径R=0.8m,g=10m/s2,求:(1)物体滑至圆弧底端时的-物理
如图所示在真空中XOY平面的X>0区域内,磁感应强度B=1.0×10-2T的匀强磁场,方向与XOY平面垂直,在X轴上P(10,0)点,有一放射源,在XOY平面内各个方向发射速度V=1.0×105m/S
如图所示,A、B两小球质量均为m,被固定在一根长为L=1m的细长轻杆两端,可绕过O点的轴在竖直平面内无摩擦转动,OA=L/3.开始时,轻杆竖直,今在B球上施加一水平恒力F=3mg2,g-物理
据有关资料介绍,受控核聚变装置中有极高的温度,因而带电粒子(核聚变的原料)将没有通常意义上的“容器”可装,而是由磁场来约束带电粒子运动使之束缚在某个区域内,右图是它的-物理
过山车是一种惊险的游乐工具,其运动轨道可视为如图所示的物理模型.已知轨道最高点A离地面高为20m,圆环轨道半径为5m,过山车质量为50kg,g=10m/s2,求:(1)若不计一切阻力,-物理
如图所示,在距地面一定高度的地方以初速度v0向右水平抛出一个质量为m,带负电,带电量为Q的小球,小球的落地点与抛出点之间有一段相应的水平距离(水平射程),求:(1)若在空间-物理
用一根长L=0.8m的轻绳,吊一质量为m=1.0g的带电小球,放在磁感应强度B=0.1T,方向如图所示的匀强磁场中,把小球拉到悬点的右端,轻绳刚好水平拉直,将小球由静止释放,小-物理
如图所示,一个小球(视为质点)从H=12m高处,由静止开始通过光滑弧形轨道AB,进入半径R=4m的竖直圆环,且圆环动摩擦因数处处相等,当到达环顶C时,刚好对轨道压力为零;沿CB圆-物理
返回顶部
题目简介
如图所示,在坐标系xOy内有一半径为a的圆形区域,圆心坐标为O1(a,0),圆内分布有垂直纸面向里的匀强磁场.在直线y=a的上方和直线x=2a的左侧区域内,有一沿y轴负方向的匀强电-物理
题目详情
(1)求磁感应强度B的大小;
(2)粒子在第一象限内运动到最高点时的位置坐标;
(3)若粒子以速度v从O点垂直于磁场方向射入第一象限,当速度方向沿x轴正方向的夹角θ=30°时,求粒子从射入磁场到最终离开磁场的时间t.
答案
qvB=
粒子自A点射出,由几何知识
R=a
解得
B=
即磁感应强度B的大小为
(2)粒子从A点向上在电场中做匀减运动,
设在电场中减速的距离为y1
由动能定理,得到
-Eqy1=0-
解得
y1=
所以在电场中最高点的坐标为(a,a+
(3)粒子的运动轨迹如图
粒子在磁场中做圆运动的周期 T=
粒子从磁场中的P点射出,因磁场圆和粒子的轨迹圆的半径相等,OO1PO2构成菱形,故粒子从P点的出射方向与y轴平行,粒子由O到P所对应的圆心角为:θ1=60°
由几何知识可知,粒子由P点到x轴的距离
S=acosθ
粒子在电场中做匀变速运动,在电场中运动的时间
t1=
粒子由P点第2次进入磁场,
由Q点射出,PO1QO3 构成菱形,
由几何知识可知Q点在x轴上,粒子由P到Q的偏向角为:θ2=120°
则 θ1+θ2=π
粒子先后在磁场中运动的总时间
t2=
粒子在场区之间做匀速运动的时间
t3=
解得粒子从射入磁场到最终离开磁场的时间
t=t1+t2+t3=
故粒子从射入磁场到最终离开磁场的时间t为