设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1),记集合S=|x|f(x)=0,x∈R|,T=|x|g(x)=0,x∈R|,若|S|,|T|分别为

题目简介

设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1),记集合S=|x|f(x)=0,x∈R|,T=|x|g(x)=0,x∈R|,若|S|,|T|分别为

题目详情

设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1),记集合S=|x|f(x)=0,x∈R|,T=|x|g(x)=0,x∈R|,若|S|,|T|分别为集合元素S,T的元素个数,则下列结论不可能的是
[     ]
A、|S|=1且|T|=0
B、|S|=1且|T|=1
C、|S|=2且|T|=2
D、|S|=2且|T|=3
题型:单选题难度:中档来源:浙江省高考真题

答案

D

更多内容推荐