如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,
解:(1) QB=8-2t,PD=t;(2)不存在.在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=10,∵ PD∥BC,∴△APD∽△ACB,∴,即:,∴AD=t,∴BD=AB-AD=10-t,∵ BQ∥DP,∴当BQ=DP时,四边形PDBQ是平行四边形,即8-2t=t,解得:,当t=时,PD=,BD=10-,∴DP≠BD,∴□PDBQ不能为菱形,设点Q的速度为每秒v个单位长度,则BQ=8-vt,PD=t,BD=10-t,要使四边形PDBQ为菱形,则PD=BD=BQ,当PD=BD时,即,解得:t=,当PD=BQ时,t=时,即,解得:v=; (3)如图2,以C为原点,以AC所在直线为x轴,建立平面直角坐标系,依题意,可知0≤t≤4,当t=0时,点M1的坐标为(3,0);当t=4时,点M2的坐标为(1,4),设直线M1M2的解析式为y=kx+b,∴,解得:,∴直线M1M2的解析式为y=-2x+6,∵ 点Q(0,2t),P(6-t,0),∴在运动过程中,线段PQ中点M3的坐标为(,t),把x=,代入y=-2x+6,得y=-2×+6=t,∴点M3在直线上,过点M2作M2N⊥x轴于点N,则M2N=4,M1N=2,∴M1M2=2,∴线段PQ中点M所经过的路径长为2单位长度。
题目简介
如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,
题目详情
(1)直接用含t的代数式分别表示:QB=______,PD=______;
(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;
(3)如图②,在整个运动过程中,求出线段PQ中点M所经过的路径长。
答案
解:(1) QB=8-2t,PD=
t;
,即:
,
t,
t,
t,解得:
,
时,PD=
,BD=10-
,
t,BD=10-
t,
,
,
时,即
,解得:v=
;
,
,
,t),
,代入y=-2x+6,得y=-2×
+6=t,
直线上,
(2)不存在.在Rt△ABC中,∠C=90°,AC=6,BC=8,
∴AB=10,
∵ PD∥BC,
∴△APD∽△ACB,
∴
∴AD=
∴BD=AB-AD=10-
∵ BQ∥DP,
∴当BQ=DP时,四边形PDBQ是平行四边形,即8-2t=
当t=
∴DP≠BD,
∴□PDBQ不能为菱形,
设点Q的速度为每秒v个单位长度,则BQ=8-vt,PD=
要使四边形PDBQ为菱形,则PD=BD=BQ,
当PD=BD时,即
解得:t=
当PD=BQ时,t=
(3)如图2,以C为原点,以AC所在直线为x轴,建立平面直角坐标系,
依题意,可知0≤t≤4,当t=0时,点M1的坐标为(3,0);
当t=4时,点M2的坐标为(1,4),设直线M1M2的解析式为y=kx+b,
∴
解得:
∴直线M1M2的解析式为y=-2x+6,
∵ 点Q(0,2t),P(6-t,0),
∴在运动过程中,线段PQ中点M3的坐标为(
把x=
∴点M3在
过点M2作M2N⊥x轴于点N,则M2N=4,M1N=2,
∴M1M2=2,
∴线段PQ中点M所经过的路径长为2单位长度。