已知△ABC中,AB=,AC=,BC=6.(1)如图1,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求线段MN的长;(2)如图2,是由100个边长为1的小正方形组成的10×10的正

题目简介

已知△ABC中,AB=,AC=,BC=6.(1)如图1,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求线段MN的长;(2)如图2,是由100个边长为1的小正方形组成的10×10的正

题目详情

已知△ABC中,AB=,AC=,BC=6.
(1)如图1,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求线段MN的长;
(2)如图2,是由100个边长为1的小正方形组成的10×10的正方形网格,设顶点在这些小正方形顶点
的三角形为格点三角形.
①请你在所给的网格中画出格点△A1B1C1与△ABC全等(画出一个即可,不需证明);
②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个(不需
证明).
题型:解答题难度:中档来源:不详

答案

解:(1)①如图A,过点M作MN∥BC交AC于点N,
则△AMN∽△ABC,

∵M为AB中点,∴MN是△ABC 的中位线。
∵BC=6,∴MN=3。
②如图B,过点M作∠AMN=∠ACB交AC于点N,

则△AMN∽△ACB,∴
∵BC=6,AC=  ,AM=,∴,解得MN=
综上所述,线段MN的长为3或
(2)①如图所示:

②每条对角线处可作4个三角形与原三角形相似,那么共有8个。
网格问题,作图(相似变换),三角形中位线定理,相似三角形的性质。
(1)作MN∥BC交AC于点N,利用三角形的中位线定理可得MN的长;作∠AMN=∠B,利用相似可得MN的长。
(2)①A1B1=为直角三角形斜边的两直角边长为2,4,A1C1=为直角三角形斜边的两直角边长为4,8。以此,先作B1C1=6,画出△A1B1C1。
②以所给网格的对角线作为原三角形中最长的边,可得每条对角线处可作4个三角形与原三角形相似,那么共有8个。

更多内容推荐