在△中,AD⊥BC,(1)利用尺规作图,作△外接圆⊙O;(2)判断:AC和⊙O的位置关系,并说明理由;(3)若AC=10,AD=8,求⊙O的直径;-八年级数学

题目简介

在△中,AD⊥BC,(1)利用尺规作图,作△外接圆⊙O;(2)判断:AC和⊙O的位置关系,并说明理由;(3)若AC=10,AD=8,求⊙O的直径;-八年级数学

题目详情

在△中,AD⊥BC,

(1)利用尺规作图,作△外接圆⊙O;
(2)判断:AC和⊙O的位置关系,并说明理由;
(3)若AC=10,AD=8,求⊙O的直径;
题型:解答题难度:中档来源:不详

答案

(1)-(2)AC是⊙O的切线,理由见解析(3)
解:(1)------------2分
(2)∵AD⊥BC




------------3分       
∵AB是圆O的直径
∴AC是⊙O的切线------------4分
(3)∵,AC=10,AD=8
∴CD=6------------5分


∴△ADC∽△BDA-----------6分
-----------7分

------------8分
(1)先根据基本作图,作出线段AB的垂直平分线,交点就是圆心,再以AB的一半为半径画圆即可;
(2)AC是⊙O的切线,由于AD⊥BC,那么∠ADB=90°,即∠B+∠BAD=90°,而∠CAD=∠B,等量代换即可得∠CAD+∠BAD=90°,即∠BAC=90°,从而可证AC是⊙O的切线;
(3)由于∠CAD=∠B,∠ADC=∠BDA=90°,易证△ACD∽△BAD,在Rt△ACD中利用勾股定理可求CD,再利用比例线段可求AB

更多内容推荐