已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根,应假设成()A.三个方程都没有两个相异实根

题目简介

已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根,应假设成()A.三个方程都没有两个相异实根

题目详情

已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根,应假设成(  )
A.三个方程都没有两个相异实根
B.一个方程没有两个相异实根
C.至多两个方程没有两个相异实根
D.三个方程不都没有两个相异实根
题型:单选题难度:偏易来源:不详

答案

A

更多内容推荐