(本题满分13分)已知数列{an}的前n项和为Sn,且an=(3n+Sn)对一切正整数n成立(I)证明:数列{3+an}是等比数列,并求出数列{an}的通项公式;(II)设,求数列的前n项和Bn;-高

题目简介

(本题满分13分)已知数列{an}的前n项和为Sn,且an=(3n+Sn)对一切正整数n成立(I)证明:数列{3+an}是等比数列,并求出数列{an}的通项公式;(II)设,求数列的前n项和Bn;-高

题目详情

(本题满分13分)已知数列{an}的前n项和为Sn,且an=(3n+Sn)对一切正整数n成立
(I)证明:数列{3+an}是等比数列,并求出数列{an}的通项公式;
(II)设,求数列的前n项和Bn
题型:解答题难度:中档来源:不详

答案

(I)2an+3     (II)
(I)由已知得Sn=2an-3n,
Sn+1=2an+1-3(n+1),两式相减并整理得:an+1=2an+3     
所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+ a1=6,进而可知an+3
所以,故数列{3+an}是首相为6,公比为2的等比数列,
所以3+an=6,即an=3()   
(II)
         (1)
     (2)
由(2)-(1)得

更多内容推荐