设z=12+32i(i是虚数单位),则z+2z2+3z3+4z4+5z5+6z6=()A.6zB.6z2C.6.zD.-6z-数学

题目简介

设z=12+32i(i是虚数单位),则z+2z2+3z3+4z4+5z5+6z6=()A.6zB.6z2C.6.zD.-6z-数学

题目详情

设z=
1
2
+
3
2
i
(i是虚数单位),则z+2z2+3z3+4z4+5z5+6z6=(  )
A.6zB.6z2C.6
.
z
D.-6z
题型:单选题难度:中档来源:不详

答案

∵z=class="stub"1
2
+
3
2
i
=cosclass="stub"π
3
+isinclass="stub"π
3

z+2z2+3z3+4z4+5z5+6z6=cosclass="stub"π
3
+isinclass="stub"π
3
+2cosclass="stub"2π
3
+2sinclass="stub"2π
3
i+3cosπ
+3sinπi+4cosclass="stub"4π
3
+4sinclass="stub"4π
3
i+5cosclass="stub"5π
3
+5sinclass="stub"5π
3
i+6cos2π+6sin2πi
=6(class="stub"1
2
-
3
2
i
)=6
.
z

故选C.

更多内容推荐