函数f(x)=x-alnx+a+1x(a>0)(1)求f(x)的单调区间;(2)求使函数f(x)有零点的最小正整数a的值;(3)证明:ln(n!)-ln2>6n3-n2-19n-612n(n+1)(n

题目简介

函数f(x)=x-alnx+a+1x(a>0)(1)求f(x)的单调区间;(2)求使函数f(x)有零点的最小正整数a的值;(3)证明:ln(n!)-ln2>6n3-n2-19n-612n(n+1)(n

题目详情

函数f(x)=x-alnx+
a+1
x
(a>0)
(1)求f(x)的单调区间;
(2)求使函数f(x)有零点的最小正整数a的值;
(3)证明:ln(n!)-ln2>
6n3-n2-19n-6
12n(n+1)
(n∈N*,n≥3).
题型:解答题难度:中档来源:不详

答案

(1)函数f(x)的定义域为(0,+∞),f′(x)=1-class="stub"a
x
-class="stub"a+1
x2
=
[x-(a+1)](x+1)
x2
(2分)
∵x>0,a>0,
∴由f′(x)≥0得x≥a+1,f′(x)≤0得x≤a+1,
∴f(x)在(0,a+1)上递减,在(a+1,+∞)上递增.(4分)
(2)∵a∈N*,∴由(1)知fmin=f(a+1)=a+2-aln(a+1)
∵f(x)有零点,
∴有a+2-aln(a+1)≤0,得ln(a+1)-(1+class="stub"2
a
)≥0
令u(a)=ln(a+1)-(1+class="stub"2
a
),易知u(a)在定义域内是增函数;(6分)
∵u(3)=ln4-class="stub"5
3
<0,∴ln4<class="stub"5
3
,∴4<eclass="stub"5
3
,∴43<e5,而e5>43成立,∴u(3)<0
u(4)=ln5-class="stub"3
2
>0,∴52>e3,而52>e3成立,∴u(4)>0
故使函数f(x)有零点的最小正整数a的值为4.(8分)
(3)证明:由(2)知ln(a+1)-(1+class="stub"2
a
)≥0,即ln(a+1)≥(1+class="stub"2
a
),(a≥4),
∴lnn>1+class="stub"2
n-1
(n∈N*,n≥5),ln(n2)>1+class="stub"2
n2-1
)(n∈N*,n≥3),
即lnn>class="stub"1
2
+class="stub"1
2
(class="stub"1
n-1
-class="stub"1
n+1
)
(n∈N*,n≥3),(11分)
∴ln3+ln4+…+lnn>class="stub"1
2
(n-2)+class="stub"1
2
(class="stub"1
2
+class="stub"1
3
-class="stub"1
n
-class="stub"1
n+1
)

lnclass="stub"n!
2
6n3-n2-19n-6
12n(n+1)

∴ln(n!)-ln2>
6n3-n2-19n-6
12n(n+1)
(n∈N*,n≥3).(13分)

更多内容推荐