如图,已知等腰△ABC,AD是底边BC上的高,AD:DC=1:3,将△ADC绕着点D旋转,得△DEF,点A、C分别与点E、F对应,且EF与直线AB重合,设AC与DF相交于点O,则=.-九年级数学

题目简介

如图,已知等腰△ABC,AD是底边BC上的高,AD:DC=1:3,将△ADC绕着点D旋转,得△DEF,点A、C分别与点E、F对应,且EF与直线AB重合,设AC与DF相交于点O,则=.-九年级数学

题目详情

如图,已知等腰△ABC,AD是底边BC上的高,AD:DC=1:3,将△ADC绕着点D旋转,得△DEF,点A、C分别与点E、F对应,且EF与直线AB重合,设AC与DF相交于点O,则=  
题型:填空题难度:偏难来源:不详

答案

.

试题分析:如图,作DG⊥AB于G,DH⊥AC与H,设AD=x,则BD=3x,由勾股定理就可以求出AB=x,由三角形的面积公式求出DG的值,由三角函数值求出AG,就可以表示出AE,从而求出AF,再由△AFO∽△DCO就可以求出结论.解答:解:作DG⊥AB于G,DH⊥AC与H,

∵AB=AC,AD⊥BC,
∴∠ADB=∠ADC=90°,∠BAD=∠CAD,∠B=∠C.
∴DG=DH.
设设AD=x,则BD=3x,由勾股定理,得
AB=x,
∴AC=x.


∴GD=
 =tan∠C.
∴tan∠B=
∵∠ADG+∠GAD=90°,∠B+∠GAD=90°,
∴∠ADG=∠B.
∴tan∠ADG=

∴AG=x.
∵△FDE是由△CDA旋转得来的,
∴△FDE≌△CDA,
∴DE=DA.∠F=∠C.
∵DG⊥AB,
∴AG=EG.
∴AE=2AG,
∴AE=
∴AF=
∵∠AOF=∠DOC,∠F=∠C,
∴△AFO∽△DCO,
∴S△AOF:S△DOC==
故答案为:

更多内容推荐