如图,在平行四边形ABCD中,AD=5cm,AP=8cm,AP平分∠DAB,交DC于点P,过点B作BE⊥AD于点E,BE交AP于点F,则tan∠BFP=.-九年级数学

题目简介

如图,在平行四边形ABCD中,AD=5cm,AP=8cm,AP平分∠DAB,交DC于点P,过点B作BE⊥AD于点E,BE交AP于点F,则tan∠BFP=.-九年级数学

题目详情

如图,在平行四边形ABCD中,AD=5cm, AP=8cm, AP平分∠DAB,交DC于点P,过点B作BE⊥AD于点E,BE交AP于点F,则tan∠BFP=        
题型:填空题难度:中档来源:不详

答案


试题分析::过P作PG∥AD,交AB于G,连接DG交AP于H,求出AD=DP,得出菱形AGPD,推出DH=HG,AH=HP=4,由勾股定理求出DH,解直角三角形求出即可.
试题解析:过P作PG∥AD,交AB于G,连接DG交AP于H,

∵四边形ABCD是平行四边形,
∴DC∥AB,
∴∠DPA=∠PAB,
∵AP平分∠DAB,
∴∠DAP=∠PAB,
∴∠DPA=∠DAP,
∴AD=DP,
∴四边形AGPD是菱形,
∴AH=HP=AP=4,AH⊥DG,
在Rt△AHD中,AD=5,由勾股定理得:DH=3,
∴tan∠BFP=tan∠AFE=
故答案为:
考点: 1.平行四边形的性质;2.等腰三角形的判定与性质;3.解直角三角形.

更多内容推荐