(文科做)数列{an}中,a3=1,Sn=an+1(n=1,2,3…).(I)求a1,a2;(II)求数列{an}的前n项和Sn;(III)设bn=log2Sn,存在数列{cn}使得cn•bn+3•b

题目简介

(文科做)数列{an}中,a3=1,Sn=an+1(n=1,2,3…).(I)求a1,a2;(II)求数列{an}的前n项和Sn;(III)设bn=log2Sn,存在数列{cn}使得cn•bn+3•b

题目详情

(文科做)数列{an}中,a3=1,Sn=an+1(n=1,2,3…).
(I)求a1,a2
(II)求数列{an}的前n项和Sn
(III)设bn=log2Sn,存在数列{cn}使得cn•bn+3•bn+4=1,试求数列{cn}的前n项和.
题型:解答题难度:中档来源:不详

答案

(I)∵a1=a2,a1+a2=a3,
∴2a1=a3=1,
a1=class="stub"1
2
a2=class="stub"1
2
.…2分
(II)∵Sn=an+1=Sn+1-Sn,
2Sn=Sn+1
Sn+1
Sn
=2
,…6分
{Sn}是首项为S1=a1=class="stub"1
2
,公比为2的等比数列.
Sn=class="stub"1
2
2n-1=2n-2
.(n∈N*).…9分
(III)∵bn=log2Sn,Sn=2n-2,
∴bn=n-2,bn+3=n+1,bn+4=n+2,
cn•(n+1)(n+2)=1,cn=class="stub"1
(n+1)(n+2)
=class="stub"1
n+1
-class="stub"1
n+2
.…11分
c1+c2+…+cn=(class="stub"1
2
-class="stub"1
3
)+(class="stub"1
3
-class="stub"1
4
)+…+(class="stub"1
n+1
-class="stub"1
n+2
)=class="stub"1
2
-class="stub"1
n+2
=class="stub"n
2n+4
.…14分

更多内容推荐