(1)操作发现如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部,将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由;(2)问题解决保持(1)中
解:(1)同意,连接EF,∵∠EGF=∠D=90°,EG=AE=ED,EF=EF,∴Rt△EGF≌Rt△EDF,∴GF=DF;(2)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y∵DC=2DF,∴CF=x,DC=AB=BG=2x,∴BF=BG+GF=3x;在Rt△BCF中,BC2+CF2=BF2,即y2+x2=(3x)2∴,∴;(3)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y∵DC=n·DF,∴DC=AB=BG=nx∴CF=(n-1)x,BF=BG+GF=(n+1)x在Rt△BCF中,BC2+CF2=BF2,即y2+[(n-1)x]2=[(n+1)x]2∴,∴。
题目简介
(1)操作发现如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部,将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由;(2)问题解决保持(1)中
题目详情
如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部,将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由;
(2)问题解决
保持(1)中的条件不变,若DC=2DF,求的AD∶AB值;
(3)类比探求
保持(1)中条件不变,若DC=nDF,求的AD∶AB值。
答案
解:(1)同意,
,
;
,
。
连接EF,
∵∠EGF=∠D=90°,EG=AE=ED,EF=EF,
∴Rt△EGF≌Rt△EDF,
∴GF=DF;
(2)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y
∵DC=2DF,
∴CF=x,DC=AB=BG=2x,
∴BF=BG+GF=3x;
在Rt△BCF中,BC2+CF2=BF2,即y2+x2=(3x)2
∴
∴
(3)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y
∵DC=n·DF,
∴DC=AB=BG=nx
∴CF=(n-1)x,BF=BG+GF=(n+1)x
在Rt△BCF中,BC2+CF2=BF2,即y2+[(n-1)x]2=[(n+1)x]2
∴
∴