已知复数z1满足(z1-2)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数,求z2.-数学

题目简介

已知复数z1满足(z1-2)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数,求z2.-数学

题目详情

已知复数z1满足(z1-2)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数,求z2
题型:解答题难度:中档来源:上海

答案

z1-2=class="stub"1-i
1+i
=
(1-i)(1-i)
(1+i)(1-i)
=-i

∴z1=2-i
设z2=a+2i(a∈R)
∴z1•z2=(2-i)(a+2i)=(2a+2)+(4-a)i
∵z1•z2是实数
∴4-a=0解得a=4
所以z2=4+2i

更多内容推荐