如图,在等边△ABC中,D、E分别是BC、AC上的点,且CD=AE,AD与BE相交于点P.(1)求证:∠ABE=∠CAD;(2)若BH⊥AD于点H,求证:PB=2PH.-数学

题目简介

如图,在等边△ABC中,D、E分别是BC、AC上的点,且CD=AE,AD与BE相交于点P.(1)求证:∠ABE=∠CAD;(2)若BH⊥AD于点H,求证:PB=2PH.-数学

题目详情

如图,在等边△ABC中,D、E分别是BC、AC上的点,且CD=AE,AD与BE相交于点P.
(1)求证:∠ABE=∠CAD;
(2)若BH⊥AD于点H,求证:PB=2PH.360优课网
题型:解答题难度:中档来源:不详

答案

证明:(1)∵等边△ABC,
∴AC=AB,∠C=∠CAB.
∵CD=AE,
∴△ABE≌△CAD.
∴∠ABE=∠CAD.

(2)∵∠BPH=∠BAD+∠ABP=∠BAD+∠CAD=60°,
∵BH⊥AD于点H,
∴∠EBH=30°,
∴在Rt△PBH中,PB=2PH.

更多内容推荐