设等比数列{an}的前n项和Sn,首项a1=1,公比q=f(λ)=λ1+λ(λ≠-1,0).(Ⅰ)证明:Sn=(1+λ)-λan;(Ⅱ)若数列{bn}满足b1=12,bn=f(bn-1)(n∈N*,n

题目简介

设等比数列{an}的前n项和Sn,首项a1=1,公比q=f(λ)=λ1+λ(λ≠-1,0).(Ⅰ)证明:Sn=(1+λ)-λan;(Ⅱ)若数列{bn}满足b1=12,bn=f(bn-1)(n∈N*,n

题目详情

设等比数列{an}的前n项和Sn,首项a1=1,公比q=f(λ)=
λ
1+λ
(λ≠-1,0)

(Ⅰ)证明:Sn=(1+λ)-λan
(Ⅱ)若数列{bn}满足b1=
1
2
,bn=f(bn-1)(n∈N*,n≥2),求数列{bn}的通项公式;
(Ⅲ)若λ=1,记cn=an(
1
bn
-1)
,数列{cn}的前项和为Tn,求证:当n≥2时,2≤Tn<4.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)证明:Sn=
a1(1-qn)
1-q
=
a1[1-(class="stub"λ
1+λ
)
n
]
1-class="stub"λ
1+λ
=(1+λ)[1-(class="stub"λ
1+λ
)n]=(1+λ)-λ(class="stub"λ
1+λ
)n-1

an=a1(class="stub"λ
1+λ
)n-1=(class="stub"λ
1+λ
)n-1
所以Sn=(1+λ)-λan(4分)
(Ⅱ)f(λ)=class="stub"λ
1+λ
,∴bn=
bn-1
1+bn-1
,∴class="stub"1
bn
=class="stub"1
bn-1
+1
,(6分)

{class="stub"1
bn
}
是首项为class="stub"1
b1
=2
,公差为1的等差数列,class="stub"1
bn
=2+(n-1)=n+1
,即bn=class="stub"1
n+1
.(8分)

(Ⅲ)λ=1时,an=(class="stub"1
2
)n-1
,∴cn=an(class="stub"1
bn
-1)=n(class="stub"1
2
)n-1
(9分)
Tn=1+2(class="stub"1
2
)+3(class="stub"1
2
)2++n(class="stub"1
2
)n-1
class="stub"1
2
Tn=class="stub"1
2
+2(class="stub"1
2
)2+3(class="stub"1
2
)3++n(class="stub"1
2
)n

相减得∴class="stub"1
2
Tn=1+(class="stub"1
2
)+(class="stub"1
2
)2++(class="stub"1
2
)n-1-n(class="stub"1
2
)n=2[1-(class="stub"1
2
)n]-n(class="stub"1
2
)n

Tn=4-(class="stub"1
2
)n-2-n(class="stub"1
2
)n-1<4
,(12分)
又因为cn=n(class="stub"1
2
)n-1>0
,∴Tn单调递增,
∴Tn≥T2=2,故当n≥2时,2≤Tn<4.(13分)

更多内容推荐