乘法公式的探究及应用(1)如图1,可以求出阴影部分的面积是_________(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是_________,长是_-七年级数

题目简介

乘法公式的探究及应用(1)如图1,可以求出阴影部分的面积是_________(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是_________,长是_-七年级数

题目详情

乘法公式的探究及应用
(1)如图1,可以求出阴影部分的面积是_________(写成两数平方差的形式);
(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是_________,长是_________,面积是_________(写成多项式乘法的形式);
(3)比较图1、图2阴影部分的面积,可以得到公式_________
(4)运用你所得到的公式,计算下列各题:
①10.2×9.8,
②(2m+n﹣p)(2m﹣n+p).

题型:探究题难度:中档来源:云南省期末题

答案

解:(1)利用正方形的面积公式可知:阴影部分的面积=a2﹣b2
(2)a﹣b,a+b,(a+b)(a﹣b)
(3)(a+b)(a﹣b)=a2﹣b2(等式两边交换位置也可)
(4)①解:原式=(10+0.2)×(10﹣0.2)
=102﹣0.22
=100﹣0.04
=99.96
②解:原式=[2m+(n﹣p)][2m﹣(n﹣p)]
=(2m)2﹣(n﹣p)2
=4m2﹣n2+2np﹣p2

更多内容推荐