在棱长为1的正方体ABCD-A1B1C1D1中,E是A1B的中点。(1)求证:AE⊥A1C;(2)求证:B1C1∥平面AC;(3)求三棱锥A-A1BC的体积。-高一数学

题目简介

在棱长为1的正方体ABCD-A1B1C1D1中,E是A1B的中点。(1)求证:AE⊥A1C;(2)求证:B1C1∥平面AC;(3)求三棱锥A-A1BC的体积。-高一数学

题目详情

在棱长为1的正方体ABCD-A1B1C1D1中,E是A1B的中点。
(1)求证:AE⊥A1C;
(2)求证:B1C1∥平面AC;
(3)求三棱锥A-A1BC的体积。
题型:解答题难度:中档来源:广东省期中题

答案

(1)证明:在正方体ABCD-A1B1C1D1中,
BC⊥平面ABB1A1,AE平面ABB1A1,
∴BC⊥AE,
正方形ABB1A1中,E是A1B的中点,
∴AE⊥A1B,
又A1B∩BC=B,BC平面A1BC,
∴AE⊥平面A1BC,
∵A1C平面A1BC,
∴AE⊥A1C。
(2)证明:正方体ABCD-A1B1C1D1中,
∵B1C1∥BC,BC平面AC,B1C1平面AC,
∴B1C1∥平面AC。
(3)解:

更多内容推荐