如图,直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC,D、E分别为AA1、B1C的中点。(I)证明:DE∥底面ABC;(II)设二面角A-BC-D为60°,求BD与平面BCC1B1所成的角的正

题目简介

如图,直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC,D、E分别为AA1、B1C的中点。(I)证明:DE∥底面ABC;(II)设二面角A-BC-D为60°,求BD与平面BCC1B1所成的角的正

题目详情

如图,直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC,D、E分别为AA1、B1C的中点。
(I)证明:DE∥底面ABC;
(II)设二面角A-BC-D为60°,求BD与平面BCC1B1所成的角的正弦值。
题型:解答题难度:偏难来源:浙江省期中题

答案

(Ⅰ)证明:设BC的中点为F,连结AF、EF,则EF∥CC1,且EF=CC1,
 又AD∥CC1,且AD=CC1,  
∴EF∥AD,且EF=AD,
∴四边形ADEF是平行四边形,
∴DE∥AF,
又∵DE平面ABC,AF平面ABC,
∴DE∥底面ABC。
(Ⅱ)解:连结DF,
∵AB=AC,F为BC的中点,
∴AF⊥BC,
又∵AA1⊥底面ABC,
∴AA1⊥BC,
 又∵AA1∩AF=A,
∴BC⊥平面ADF,∴BC⊥DF,
∴∠AFD就是A-BC-D的平面角,即∠AFD=60°,
∵BB1⊥底面ABC,
∴BB1⊥AF,
 又∵AF⊥BC,BC∩BB1= B,
∴AF⊥平面BCE,
∵DE∥AF,
∴DE⊥平面BCE,
∴∠DBE就是BD与平面BCC1B1所成的角,
设AF=a,则DE=a,AD=,AB=,∴BD=
∴sin∠DBE==

更多内容推荐