如图所示,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,.(1)求证:直线PB是⊙O的切线;(2)求cos∠BCA的值.-九年级数学

题目简介

如图所示,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,.(1)求证:直线PB是⊙O的切线;(2)求cos∠BCA的值.-九年级数学

题目详情

如图所示,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,.

(1)求证:直线PB是⊙O的切线;
(2)求cos∠BCA的值.
题型:解答题难度:中档来源:不详

答案

解:(1)证明:连接OB、OP 
∵ 且∠D=∠D
∴ △BDC∽△PDO
∴ ∠DBC=∠DPO ∴  BC∥OP
∴ ∠BCO=∠POA  ∠CBO=∠BOP
∵  OB=OC  ∴ ∠OCB=∠CBO  ∴ ∠BOP=∠POA
又∵  OB=OA  OP=OP    ∴ △BOP≌△AOP  ∴ ∠PBO=∠PAO
又∵  PA⊥AC   ∴ ∠PBO=90° ∴ 直线PB是⊙O的切线
(2)由(1)知∠BCO=∠POA   设PB,则
又∵    ∴  
又∵  BC∥OP  ∴   ∴ 
 ∴  ∴  cos∠BCA=cos∠POA= 
(1)连接OB、OP,由且∠D=∠D,根据三角形相似的判定得到△BDC∽△PDO,可得到BC∥OP,易证得△BOP≌△AOP,则∠PBO=∠PAO=90°;
(2)设PB=a,则BD=2a,根据切线长定理得到PA=PB=a,根据勾股定理得到,又BC∥OP,得到DC=2CO,得到,则,利用勾股定理求出OP,然后根据余弦函数的定义即可求出cos∠BCA=cos∠POA的值.

更多内容推荐