已知a=(sinx,1),b=(cosx,-12).(1)当a⊥b时,求|a+b|的值;(2)求函数f(x)=a•(a-b)的值域.-数学

题目简介

已知a=(sinx,1),b=(cosx,-12).(1)当a⊥b时,求|a+b|的值;(2)求函数f(x)=a•(a-b)的值域.-数学

题目详情

已知
a
=(sinx,1),
b
=(cosx,-
1
2
)
.(1)当
a
b
时,求|
a
+
b
|
的值;(2)求函数f(x)=
a
•(
a
-
b
)
的值域.
题型:解答题难度:中档来源:不详

答案

(1)a•b=sinx•cosx+1×(-class="stub"1
2
)=sinxcosx-class="stub"1
2
,∵a⊥b,∴a•b=0
sinx•cosx-class="stub"1
2
=0
,故sinx•cosx=class="stub"1
2
.|a+b|=
(sinx+cosx)2+(1-class="stub"1
2
)
2
=
1+2sinxcosx+class="stub"1
4
=class="stub"3
2

(2)f(x)=a•(a-b)=a2-a•b=sin2x+12-sinx•cosx+class="stub"1
2

=class="stub"3
2
+sin2x-sinx•cosx
=class="stub"3
2
+class="stub"1-cos2x
2
-class="stub"sin2x
2

=2-class="stub"1
2
(sin2x+cos2x)
=2-
2
2
sin(2x+class="stub"π
4
)
.∵-1≤sin(2x+class="stub"π
4
)≤1

2-
2
2
≤2-
2
2
sin(2x+class="stub"π
4
)≤2+
2
2
.故函数f(x)=a•(a-b)的值域为[2-
2
2
,2+
2
2
]

更多内容推荐