设函数分别在处取得极小值、极大值.平面上点的坐标分别为、,该平面上动点满足,点是点关于直线的对称点,.求(Ⅰ)求点的坐标;(Ⅱ)求动点的轨迹方程.-高二数学

题目简介

设函数分别在处取得极小值、极大值.平面上点的坐标分别为、,该平面上动点满足,点是点关于直线的对称点,.求(Ⅰ)求点的坐标;(Ⅱ)求动点的轨迹方程.-高二数学

题目详情

设函数分别在处取得极小值、极大值.平面上点的坐标分别为,该平面上动点满足,点是点关于直线的对称点,.求
(Ⅰ)求点的坐标;
(Ⅱ)求动点的轨迹方程.
题型:解答题难度:偏易来源:不详

答案

解: (1)令解得
时,, 当时, ,当时,
所以,函数在处取得极小值,在取得极大值,故,
所以, 点A、B的坐标为.
(2) 设
,所以,又PQ的中点在上,
所以
消去.
另法:点P的轨迹方程为其轨迹为以(0,2)为圆心,半径为3的圆;设点(0,2)关于y=2(x-4)的对称点为(a,b),则点Q的轨迹为以(a,b),为圆心,半径为3的圆,由得a=8,b=-2

更多内容推荐