已知函数f(x)=x|x+m|+n,其中m,n∈R.(Ⅰ)判断函数f(x)的奇偶性,并说明理由;(Ⅱ)设n=-4,且f(x)<0对任意x∈[0,1]恒成立,求m的取值范围..-数学

题目简介

已知函数f(x)=x|x+m|+n,其中m,n∈R.(Ⅰ)判断函数f(x)的奇偶性,并说明理由;(Ⅱ)设n=-4,且f(x)<0对任意x∈[0,1]恒成立,求m的取值范围..-数学

题目详情

已知函数f(x)=x|x+m|+n,其中m,n∈R.
(Ⅰ)判断函数f(x)的奇偶性,并说明理由;
(Ⅱ)设n=-4,且f(x)<0对任意x∈[0,1]恒成立,求m的取值范围..
题型:解答题难度:中档来源:黄冈模拟

答案

(I)若m2+n2=0,即m=n=0,则f(x)=x•|x|,
∴f(-x)=-f(x).即f(x)为奇函数.(2分)
若m2+n2≠0,则m、n中至少有一个不为0,
当m≠0.则f(-m)=n,f(m)=n+2m|m|,故f(-m)≠±f(m).
当n≠0时,f(0)=n≠0,
∴f(x)不是奇函数,f(n)=n+|m+n|•n,f(-n)=n-|m-n|n,则f(n)≠f(-n),
∴f(x)不是偶函数.
故f(x)既不是奇函数也不是偶函数.
综上知:当m2+n2=0时,f(x)为奇函数;
当m2+n2≠0时,f(x)既不是奇函数也不是偶函数.(5分)
(Ⅱ)若x=0时,m∈R,f(x)<0恒成立;(6分)
若x∈(0,1]时,原不等式可变形为|x+m|<class="stub"4
x
.即-x-class="stub"4
x
<m<-x+class="stub"4
x

∴只需对x∈(0,1],满足
m<(-x+class="stub"4
x
)
min
m>(-x-class="stub"4
x
)
max
(8分)
对①式,f1(x)=-x+class="stub"4
x
在(0,1]上单调递减,
∴m<f1(1)=3.(10分)
对②式,设f&2(x)=-x-class="stub"4
x
,则f2(x)=
-x2+4
x2
>0
.(因为0<x<1)
∴f2(x)在(0,1]上单调递增,
∴m>f2(1)=-5.(12分)
综上所知:m的范围是(-5,3).(13分).

更多内容推荐