如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G.(1)求证:BC=DE;(2)如果∠ABC=∠CBD,那么线段FD是线段FG和

题目简介

如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G.(1)求证:BC=DE;(2)如果∠ABC=∠CBD,那么线段FD是线段FG和

题目详情

如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G.

(1)求证:BC=DE;
(2)如果∠ABC=∠CBD ,那么线段FD是线段FG和FB的比例中项吗?为什么?
题型:解答题难度:中档来源:不详

答案

(1)由∠BAD=∠CAE可得∠BAC=∠DAE,再由AB=AD,AC=AE可得△BAC≌△DAE,即可证得结论;(2)是

试题分析:(1)由∠BAD=∠CAE可得∠BAC=∠DAE,再由AB=AD,AC=AE可得△BAC≌△DAE,即可证得结论;
(2)由(1)知∠ABC=∠ADE,由∠ABC =∠CBD可得∠CBD=∠ADE,再有∠DFG=∠BFD可得△DFG∽△BFD,根据相似三角形的性质即可得到结果.
(1)∵∠BAD=∠CAE
∴∠BAC=∠DAE 
∵AB=AD,AC=AE
∴△BAC≌△DAE
∴BC=DE;
(2)FD是FG和FB的比例中项
理由,由(1)知∠ABC=∠ADE
∵∠ABC =∠CBD
∴∠CBD=∠ADE
又∵∠DFG=∠BFD
∴△DFG∽△BFD 
∴FG:FD=FD:BF
∴FD2=FG·FB.
点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握.

更多内容推荐