已知函数f(x)=ln(ex+a)(a>0).(1)求函数y=f(x)的反函数y=f-1(x)及f(x)的导数f′(x);(2)假设对任意x∈[ln(3a),ln(4a)],不等式|m-f-1(x)|

题目简介

已知函数f(x)=ln(ex+a)(a>0).(1)求函数y=f(x)的反函数y=f-1(x)及f(x)的导数f′(x);(2)假设对任意x∈[ln(3a),ln(4a)],不等式|m-f-1(x)|

题目详情

已知函数f(x)=ln(ex+a)(a>0).
(1)求函数y=f(x)的反函数y=f-1(x)及f(x)的导数f′(x);
(2)假设对任意x∈[ln(3a),ln(4a)],不等式|m-f-1(x)|+ln(f′(x))<0成立,求实
数m的取值范围.
题型:解答题难度:中档来源:辽宁

答案

(1)、设y=ln(ex+a),a>0,则ey=ex+a,∴ex=ey-a,a>0,∴x=ln(ey-a),x,y互换得到函数y=f(x)的反函数f-1(x)=ln(ex-a),x∈R;f′(x)=
ex
ex+a

(2)、由|m-f-1(x)|+ln(f'(x))<0得ln(ex-a)-ln(ex+a)+x<m<ln(ex-a)+ln(ex+a)-x.
设ϕ(x)=ln(ex-a)-ln(ex+a)+x,ψ(x)=ln(ex-a)+ln(ex+a)-x,
于是原不等式对于x∈[ln(3a),ln(4a)]恒成立等价于ϕ(x)<m<ψ(x).
ϕ′(x)=
ex
ex-a
-
ex
ex+a
+1,ψ′(x)=
ex
ex-a
+
ex
ex+a
-1
,注意到0<ex-a<ex<ex+a,故有ϕ'(x)>0,ψ'(x)>0,从而可ϕ(x)与ϕ(x)均在[ln(3a),ln(4a)]上单调递增,因此不等式ϕ(x)<m<ψ(x)成立当且仅当ϕ(ln(4a))<m<ψ(ln(3a)).即ln(class="stub"12
5
a)<m<ln(class="stub"8
3
a).

更多内容推荐