设x≥y≥z≥π12,且x+y+z=π2,求乘积cosxsinycosz的最大值和最小值.-数学

题目简介

设x≥y≥z≥π12,且x+y+z=π2,求乘积cosxsinycosz的最大值和最小值.-数学

题目详情

设x≥y≥z≥
π
12
,且x+y+z=
π
2
,求乘积cosxsinycosz的最大值和最小值.
题型:解答题难度:中档来源:不详

答案

∵x≥y≥z≥class="stub"π
12
,且x+y+z=class="stub"π
2

class="stub"π
6
≤x≤class="stub"π
2
-class="stub"π
12
×2=class="stub"π
3
,y+z=class="stub"π
2
-x,
class="stub"π
6
≤x≤class="stub"π
3
,y≥z,
∴cosxsin(y-z)≥0,
∴cosxsinycosz
=cosx×class="stub"1
2
[sin(y+z)+sin(y-z)]
=cosx×class="stub"1
2
[cosx+sin(y-z)]
=class="stub"1
2
cos2x+class="stub"1
2
cosxsin(y-z)≥class="stub"1
2
cos2x═class="stub"1
2
cos2class="stub"π
3
=class="stub"1
8

当y=z=class="stub"π
12
,x=class="stub"π
3
时,cosxsinycosz取得最小值,最小值为class="stub"1
8

∵sin(x-y)≥0,cosz>0,
∴cosxsinycosz
=cosz×class="stub"1
2
[sin(x+y)-sin(x-y)]
=class="stub"1
2
cos2z-class="stub"1
2
coszsin(x-y)≤class="stub"1
2
cos2z=class="stub"1+cos2z
4
=class="stub"1
4
(1+cosclass="stub"π
6
)=
2+
3
8

当x=y=class="stub"5π
12
,z=class="stub"π
12
时取得最大值,最大值为
2+
3
8

更多内容推荐