在△ABC中AB=AC,AD为高,点E在AC上,BE交AD于F,EC:AE=1:3,则FD:AF=______.-数学

题目简介

在△ABC中AB=AC,AD为高,点E在AC上,BE交AD于F,EC:AE=1:3,则FD:AF=______.-数学

题目详情

在△ABC中AB=AC,AD为高,点E在AC上,BE交AD于F,EC:AE=1:3,则FD:AF=______.
题型:填空题难度:偏易来源:不详

答案

如图,过点E作EGBC交AD于G,
∵EC:AE=1:3,
class="stub"AE
AC
=class="stub"3
1+3
=class="stub"3
4

class="stub"EG
CD
=class="stub"AG
AD
=class="stub"AE
AC
=class="stub"3
4

class="stub"AG
DG
=class="stub"AE
EC
=3,
∵AB=AC,AD为高,
∴BD=CD,
∵EGBC,
class="stub"GF
FD
=class="stub"EG
BD
=class="stub"EG
CD
=class="stub"3
4

设FD=4x,则GF=3x,
∴AG=3DG=3(GF+FD)=3(3x+4x)=21x,
∴AF=AG+GF=21x+3x=24x,
∴FD:AF=4x:24x=1:6.
故答案为:1:6.

更多内容推荐