定义在R上函数y=f(x)是减函数,且函数y=f(x-1)的图像关于(1,0)成中心对称,若s,t满足不等式f(s2-2s)≤-f(2t-t2),则当1≤s≤4时,的取值范围是()A.B.C.D.-高

题目简介

定义在R上函数y=f(x)是减函数,且函数y=f(x-1)的图像关于(1,0)成中心对称,若s,t满足不等式f(s2-2s)≤-f(2t-t2),则当1≤s≤4时,的取值范围是()A.B.C.D.-高

题目详情

定义在R上函数y=f(x)是减函数,且函数y=f(x-1)的图像关于(1,0)成中心对称,若s,t满足不等式f(s2-2s)≤-f(2t-t2),则当1≤s≤4时,的取值范围是(  )
A.B.C.D.
题型:单选题难度:中档来源:不详

答案

D

试题分析:由f(x-1)的图象关于(1,0)中心对称知f(x)的图象关于(0,0)中心对称,故f(x)为奇函数得f(s2-2s)≤f(t2-2t),从而t2-2t≤s2-2s,化简得(t-s)(t+s-2)≤0,又1≤s≤4,故2-s≤t≤s,从而,而,故.故选C.

更多内容推荐