优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 在正三棱柱ABC-A1B1C1(底面三角形ABC是正三角形的直棱柱)中,点D,E分别是BC,B1C1的中点,BC1∩B1D=F,BC=2BB1.求证:(1)平面A1EC∥平面AB1D;(2)平面A1B
在正三棱柱ABC-A1B1C1(底面三角形ABC是正三角形的直棱柱)中,点D,E分别是BC,B1C1的中点,BC1∩B1D=F,BC=2BB1.求证:(1)平面A1EC∥平面AB1D;(2)平面A1B
题目简介
在正三棱柱ABC-A1B1C1(底面三角形ABC是正三角形的直棱柱)中,点D,E分别是BC,B1C1的中点,BC1∩B1D=F,BC=2BB1.求证:(1)平面A1EC∥平面AB1D;(2)平面A1B
题目详情
在正三棱柱ABC-A
1
B
1
C
1
(底面三角形ABC是正三角形的直棱柱)中,点D,E分别是BC,B
1
C
1
的中点,BC
1
∩B
1
D=F,
BC=
2
B
B
1
.求证:
(1)平面A
1
EC
∥
平面AB
1
D;
(2)平面A
1
BC
1
⊥平面AB
1
D.
题型:解答题
难度:中档
来源:不详
答案
证明:(1)∵点D,E分别是BC,B1C1的中点,
∴A1E
∥
AD,EC
∥
B1D,
∴A1E
∥
平面AB1D,
又∵A1E∩EC=E,∴平面A1EC
∥
平面AB1D.
(2)∵△ABC是正三角形,点D是BC的中点,
∴AD⊥BC,
又∵平面ABC⊥平面BCC1B1,
∴AD⊥平面BCC1B1,
∴AD⊥BC1,
又∵点D是BC的中点,
BC=
2
B
B
1
,
∴
BD=
2
2
B
B
1
,
B
B
1
=
2
2
B
1
C
1
,
∴
class="stub"BD
B
B
1
=
B
B
1
B
1
C
1
,∴△BDB1
∽
△B1BC1,
故∠BDB1=∠B1BC1,即∠BDF=∠B1BF,
∴
∠BDF+∠DBF=∠
B
1
BF+∠DBF=9
0
0
,∠BFD=90°,
∴BF⊥B1D,即BC1⊥B1D,从而BC1⊥平面AB1D.
又BC1⊂平面A1BC1,所以平面A1BC1⊥平面AB1D.
上一篇 :
α、β是两个不同的平面,m、n是
下一篇 :
如图,在直四棱柱中,已知,。(1)求证:;(2
搜索答案
更多内容推荐
如图,两个正方形ABCD和ADEF所在平面互相垂直,设M、N分别是BD和AE的中点,那么①AD⊥MN;②MN∥面CDE;③MN∥CE;④MN、CE异面其中正确结论的序号是______.-数学
设a、b是异面直线,α、β是两个平面,且a⊥α,b⊥β,a⊄β,b⊄α,则当______(填上一种条件即可)时,有α⊥β.-数学
如图,四边形ABCD是正方形,PB⊥平面ABCD,MA⊥平面ABCD,PB=AB=2MA.求证:(1)平面AMD∥平面BPC;(2)平面PMD⊥平面PBD.-高二数学
已知PD⊥矩形ABCD所在的平面,图中相互垂直的平面有()A.2对B.3对C.4对D.5对-数学
如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A、B的任一点,求证:平面PAC垂直于平面PBC.-数学
如图,矩形ABCD中,已知AB=2AD,E为AB的中点,将△AED沿DE折起,使AB=AC,求证:平面ADE⊥平面BCDE.-数学
如图所示,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC12AD,BE12AF,证明:C,D,F,E四点共面.-数学
已知M是正四面体ABCD棱AB的中点,N是棱CD的中点,则下列结论中,正确的个数有()(1)MN⊥AB;(2)VA-MCD=VB-MCD;(3)平面CDM⊥平面ABN;(4)CM与AN是相交直线.A.
m、n表示直线,α、β、γ表示平面,给出下列四个命题,其中正确命题为()①α∩β=m,n⊂α,n⊥m,则α⊥β②α⊥β,α∩γ=m,β∩γ=n,则m⊥n③α⊥β,α⊥γ,β∩γ=m,则m⊥α④m⊥α,
如图,已知AB⊥平面BCD,BC⊥CD.请指出图中所有互相垂直的平面,并说明理由.-高二数学
已知直线m、n,平面α、β,给出下列命题:①若m⊥α,n⊥β,且m⊥n,则α⊥β;②若m∥α,n∥β,且m∥n,则α∥β;③若m⊥α,n∥β,且m⊥n,则α⊥β;④若m⊥α,n∥β,且m∥n,则α⊥β
已知:直线b⊥平面α,平面β∥直线b,求证:α⊥β-数学
平面α⊥平面β的一个充分条件是()A.存在一条直线l,l⊥α,l⊥βB.存在一个平面γ,γ∥α,γ∥βC.存在一个平面γ,γ⊥α,γ⊥βD.存在一条直线l,l⊥α,l∥β-数学
如图,在直三棱柱ABC-A1B1C1中,AB=AC=2AA1=2,sin∠ABC=32,D是BC的中点.(1)求证:A1B∥平面AC1D;(2)求证:平面AC1D⊥平面B1BCC1;(3)求三棱锥B-
已知直线a,b与平面α,β,γ,能使α⊥β的条件是()A.α⊥γ,β⊥γB.α∩β=a,b⊥a,b⊂βC.a∥β,a∥αD.a⊥β,a∥α-数学
如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2。(1)求证:A1C⊥平
在棱长为a的正方体ABCD-A1B1C1D1中,E、F分别为棱AB和BC的中点,EF与BD交于点G。(1)求二面角B1-EF-B的正切值;(2)M为棱BB1上的一点,当的值为多少时能使D1M⊥平面EF
如图:已知AB⊥平面BCD,BC⊥CD,求证:平面ACD⊥平面ABC.-数学
ABCD为正方形,P为平面ABCD外一点,且PA⊥平面ABCD,则平面PAB与平面PBC,平面PAB与平面PAD的位置关系是()A.平面PAB与平面PAD,PBC垂直B.它们都分别相交且互相垂直C.平
如图,A-BCDE是一个四棱锥,AB⊥平面BCDE,且四边形BCDE为矩形,则图中互相垂直的平面共有()A.4组B.5组C.6组D.7组-高二数学
直三棱柱ABC-A1B1C1中,AC=BC=BB1=1,AB1=3(1)求证:平面AB1C⊥平面B1CB;(2)求三棱锥A1-AB1C的体积.-高二数学
设两个平面α、β,直线l,下列三个条件:①l⊥α;②l∥β;③α⊥β.若以其中两个作为前提,另一个作为结论,则可构成三个命题,这三个命题中正确的个数为()A.3B.2C.1D.0-数学
如图,在正方体ABCD﹣A1B1C1D1中,E、F为棱AD、AB的中点.(Ⅰ)求证:EF∥平面CB1D1;(Ⅱ)求证:平面CAA1C1⊥平面CB1D1.-高三数学
如图在三棱锥P-ABC中,PA⊥底面ABC,PA=PB,∠ABC=60°,点D、E分别在棱PB,PC上,且DE∥BC,(1)求证:BC⊥平面PAC;(2)当D为PB的中点时,求AD与平面PAC所成的角
如图,已知四棱锥E-ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=.(I)求证:平面EAB⊥平面ABCD;(II)求二面角A-EC-D的余弦值.-高三数学
如图,AB是圆O的直径,C是圆周上一点,PA⊥平面ABC.(1)求证:平面PAC⊥平面PBC;(2)若D也是圆周上一点,且与C分居直径AB的两侧,试写出图中所有互相垂直的各对平面.-数学
作等腰直角三角形ABC的斜边AB的中线CD,沿CD将△ABC折叠,使平面ACD⊥平面BCD,则折叠后AC与BC的夹角∠ACB的度数为______.-高二数学
ABCD为平行四边形,P为平面ABCD外一点,PA⊥面ABCD,且PA=AD=2,AB=1,AC=3.(1)求证:平面ACD⊥平面PAC;(2)求异面直线PC与BD所成角的余弦值;(3)设二面角A-P
平面α⊥平面β的一个充分条件是()A.存在一条直线l,l⊥α,l⊥βB.存在一个平面γ,γ∥α,γ∥βC.存在一个平面γ,γ⊥α,γ⊥βD.存在一条直线l,l⊥α,l∥β-数学
如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF=12AD=a,G是EF的中点,则GB与平面AGC所成角的正弦值为______.-高二数学
如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动。(1)求三棱锥E-PAD的体积;(2)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并
如图,已知△ABC为正三角形,EC⊥平面ABC,BD⊥平面ABC,且EC、BD在平面ABC的同侧,M为EA的中点,CE=CA=2BD,求证:(1)DE=DA;(2)平面BDM⊥平面ECA.-数学
如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。(1)证明:平面BDC1⊥平面BDC;(2)平面BDC1分此棱柱为两部分,求这两部分体积的比
已知直线l⊥平面α,直线m∥平面β,下列命题中正确的是[]A.若α⊥β,则l⊥mB.若α⊥β则l∥mC.若l⊥m,则α∥βD.若l∥m,则α⊥β-高三数学
底面是平行四边形的四棱锥P-ABCD,E、F、G分别为AB、PC、DC的中点,(1)求证:EF∥面PAD;(2)若PA⊥平面ABCD,求证:面EFG⊥面ABCD.-高二数学
如图,在四棱锥P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2,PD=CD=2。(1)求异面直线PA与BC所成角的正切值;(2)证明:平面PDC⊥平面ABCD;(3)求直线PB与平面
在△ABC中,∠BAC=90°,P为△ABC所在平面外一点,且PA=PB=PC,则平面PBC与平面ABC的关系是______.-数学
已知平面α⊥平面β,点A∈α,则过点A且垂直于平面β的直线()A.只有一条,不一定在平面α内B.有无数条,不一定在平面α内C.只有一条,一定在平面α内D.有无数条,一定在平面α内-数学
如图,边长为4的正方形ABCD所在平面与正三角形PAD所在平面互相垂直,M,Q分别为PC,AD的中点,(1)求四棱锥P-ABCD的体积;(2)求证:PA∥平面MBD;(3)试问:在线段AB上是否存在一
已知三个命题:①两个平面垂直,过其中一个平面内一点,作与它们交线垂直的直线,必垂直于另一个平面;②两个平面垂直,分别在两个平面内,且互相垂直的两条直线,一定分别与另-数学
已知正三棱柱ABC-A1B1C1,D为棱CC1上任意一点,E为BC中点,F为B1C1的中点,证明:(1)A1F∥平面ADE;(2)平面ADE⊥平面BCC1B1.-高二数学
如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点.(1)若CD∥平面PBO,试确定点O的位
下列命题中正确的是[]A.如果两条直线都平行于同一个平面,那么这两条直线互相平行B.过一条直线有且只有一个平面与已知平面垂直C.如果一条直线平行于一个平面内的一条直线,那-高三数学
三棱锥P-ABC中∠ABC=90°,PA=PB=PC,则下列说法正确的是()A.平面PAC⊥平面ABCB.平面PAB⊥平面PBCC.PB⊥平面ABCD.BC⊥平面PAB-数学
如图,△ABC为正三角形,EC⊥平面ABC,BD∥CE,CE=CA=2BD,N是EA的中点,求证:(1)DE=DA;(2)平面BDN⊥平面ECA;(3)平面DEA⊥平面ECA.-数学
如图,已知平行六面体ABC-A1B1C1的底面为正方形,O1,O分别为上、下底面中心,且A1在底面ABCD上的射影为O.(1)求证:平面O1DC⊥平面ABCD;(2)若点E、F分别在棱AA1、BC上,
已知直线平面,直线平面,给出下列命题:①,则;②若,则;③若,则;④若,则.其中正确命题的序号是()-高三数学
在正方体ABCD-A1B1C1D1中,M,N分别是棱AB,BC上异于端点的点,(1)证明△B1MN不可能是直角三角形;(2)如果M,N分别是棱AB,BC的中点,(ⅰ)求证:平面B1MN⊥平面BB1D1
如图,在△ABC中,∠ABC=60°,∠BAC=90°,AD是BC上的高,沿AD把△ABC折起,使∠BDC=60°.(1)证明:平面ADB⊥平面BDC;(2)设E为BC的中点,求异面直线AE与DB所成
如图,在正方体ABCD-A1B1C1D1中,E,F,G,H分别为棱BC,CC1,C1D1,AA1的中点,O为AC与BD的交点.(1)求证:平面BDF∥平面B1D1H;(2)求证:平面BDF⊥平面A1A
返回顶部
题目简介
在正三棱柱ABC-A1B1C1(底面三角形ABC是正三角形的直棱柱)中,点D,E分别是BC,B1C1的中点,BC1∩B1D=F,BC=2BB1.求证:(1)平面A1EC∥平面AB1D;(2)平面A1B
题目详情
(1)平面A1EC∥平面AB1D;
(2)平面A1BC1⊥平面AB1D.
答案
∴A1E∥AD,EC∥B1D,
∴A1E∥平面AB1D,
又∵A1E∩EC=E,∴平面A1EC∥平面AB1D.
(2)∵△ABC是正三角形,点D是BC的中点,
∴AD⊥BC,
又∵平面ABC⊥平面BCC1B1,
∴AD⊥平面BCC1B1,
∴AD⊥BC1,
又∵点D是BC的中点,BC=
∴BD=
∴
故∠BDB1=∠B1BC1,即∠BDF=∠B1BF,
∴∠BDF+∠DBF=∠B1BF+∠DBF=900,∠BFD=90°,
∴BF⊥B1D,即BC1⊥B1D,从而BC1⊥平面AB1D.
又BC1⊂平面A1BC1,所以平面A1BC1⊥平面AB1D.