优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 如图,一只猫头鹰蹲在一棵树AC的B(点B在AC上)处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住,为了寻找这只老鼠,它又飞至树顶C处,已知短墙高DF=4米,短墙底-九年级数学
如图,一只猫头鹰蹲在一棵树AC的B(点B在AC上)处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住,为了寻找这只老鼠,它又飞至树顶C处,已知短墙高DF=4米,短墙底-九年级数学
题目简介
如图,一只猫头鹰蹲在一棵树AC的B(点B在AC上)处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住,为了寻找这只老鼠,它又飞至树顶C处,已知短墙高DF=4米,短墙底-九年级数学
题目详情
如图,一只猫头鹰蹲在一棵树AC的B(点B在AC上)处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住,为了寻找这只老鼠,它又飞至树顶C处,已知短墙高DF=4米,短墙底部D与树的底部A的距离为2.7米,猫头鹰从C点观测F点的俯角为53°,老鼠躲藏处M(点M在DE上)距D点3米.
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
(1)猫头鹰飞至C处后,能否看到这只老鼠?为什么?
(2)要捕捉到这只老鼠,猫头鹰至少要飞多少米(精确到0.1米)?
题型:解答题
难度:中档
来源:不详
答案
解:(1)能看到,理由如下:
由题意得,∠DFG=90°﹣53°=37°,则
=tan∠DFG。
∵DF=4米,∴DG=4×tan37°=4×0.75=3(米)。
∵老鼠躲藏处M(点M在DE上)距D点3米,∴猫头鹰能看到这只老鼠。
(2)由(1)得,AG=AD+DG=2.7+3=5.7(米),
又
=sin∠C=sin37°,则CG=
(米)。
答:要捕捉到这只老鼠,猫头鹰至少要飞9.5米。
试题分析:(1)根据猫头鹰从C点观测F点的俯角为53°,可知∠DFG=90°﹣53°=37°,在△DFG中,已知DF的长度,求出DG的长度,若DG>3,则看不见老鼠,若DG<3,则可以看见老鼠。
(2)根据(1)求出的DG长度,求出AG的长度,然后在Rt△CAG中,根据
=sin∠C=sin37°,即可求出CG的长度。
上一篇 :
如图,在△ABC中,AB=AC,∠A=120°,B
下一篇 :
如图,在一笔直的海岸线l上有A,B
搜索答案
更多内容推荐
计算:-九年级数学
如图,圆柱的底面直径为cm,高为cm.动点从点出发,沿圆柱的侧面移动到的中点的最短距离是cm(取).-八年级数学
(2013年四川资阳9分)钓鱼岛历来是中国领土,以它为圆心在周围12海里范围内均属于禁区,不允许它国船只进入,如图,今有一中国海监船在位于钓鱼岛A正南方距岛60海里的B处海域-九年级数学
如图,∠XOY=90°,OW平分∠XOY,PA⊥OX,PB⊥OY,PC⊥OW.若OA+OB+OC=1,则OC=()A.2-B.-1C.6-D.-3-九年级数学
(2013年四川攀枝花4分)如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,则tan∠DBE的值是.-九年级数学
计算:-九年级数学
如图,梯形ABCD中,AD∥BC,AB=DC=3,AD=5,∠C=60°,则下底BC的长为A.8B.9C.10D.11-九年级数学
计算:,(说明:本题不能使用计算器)-九年级数学
如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为60°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为45°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度为(即tan∠PCD-九年级数学
对于钝角α,定义它的三角函数值如下:sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)(1)求sin120°,cos120°,sin150°的值;(2)若一个三角形的三个内角的比是1
某人沿坡度为3:4的斜坡前进了10米,则他所在的位置比原来的位置升高了()米。-九年级数学
计算:.-九年级数学
如图所示,一条笔直的大街宽是40米,一条人行道穿过这条大街,并与大街成某一角度,则人行道的宽度是[]A.9米B.10米C.12米D.15米-九年级数学
如图,有一段斜坡BC长为10米,坡角∠CBD=12°,为方便残疾人的轮椅车通行,现准备把坡角降为5°(1)求坡高CD;(2)求斜坡新起点A与原起点B的距离(精确到0.1米)。参考数据(sin12°-九
如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值=____________-九年级数学
(2013年四川南充8分)如图,公路AB为东西走向,在点A北偏东36.5°方向上,距离5千米处是村庄M;在点A北偏东53.5°方向上,距离10千米处是村庄N(参考数据:sin36.5°=0.6,cos
(2013年四川南充6分)计算-九年级数学
计算:tan60°+2sin45°-2cos30°-九年级数学
已知tanA=1,则锐角A的度数是A.30°B.45°C.60°D.75°-九年级数学
A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门-九年级
.-九年级数学
计算:sin260°+cos60°﹣tan45°=.-九年级数学
在Rt△ABC中,∠C=90°,AB=13,AC=12,则sinB的值是[]A.B.C.D.-九年级数学
一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点-九年级数学
____________-九年级数学
如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60°.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.-九年级数学
(2013年四川南充3分)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是【】A.12B.24C.12D.16-九年级数学
(2013年四川绵阳16分)(2013年四川绵阳8分)计算:;-九年级数学
如图,已知在Rt△ACB中,∠C=90°,AB=13,AC=12,则cosB的值为.-九年级数学
在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号)-九年级数学
请运用你喜欢的方法求tan75°=.-九年级数学
如图,AC是操场上直立的一个旗杆,从旗杆上的B点到地面C涂着红色的油漆,用测角仪测得地面上的D点到B点的仰角是∠BDC=45°,到A点的仰角是∠ADC=60°(测角仪的高度忽略不计)如果-九年级数学
国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持-九年级数学
如图,一艘核潜艇在海面下500米A处测得俯角为30°正前方的海底C处有黑匣子信号发出,继续在同一深度直线航行4000米后在B处测得俯角为60°正前方的海底C处有黑匣子信号发出,点-九年级数学
“一炷香”是闻名中外的恩施大峡谷著名的景点.某校综合实践活动小组先在峡谷对面的广场上的A处测得“香顶”N的仰角为45°,此时,他们刚好与“香底”D在同一水平线上.然后沿着坡度为-九年级数学
如图,图1是某仓库的实物图片,图2是该仓库屋顶(虚线部分)的正面示意图,BE、CF关于AD轴对称,且AD、BE、CF都与EF垂直,AD=3米,在B点测得A点的仰角为30°,在E点测得D点的仰-九年级数
在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA=.-九年级数学
计算:-九年级数学
(2013年四川绵阳3分)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=【】A.cmB.cmC.cmD.cm-九年级数学
在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于A.B.C.D.-九年级数学
已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=4
如图,岸边的点A处距水面的高度AB为2.17米,桥墩顶部点C距水面的高度CD为23.17米.从点A处测得桥墩顶部点C的仰角为26°,求岸边的点A与桥墩顶部点C之间的距离.(结果精确到0.-九年级数学
如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.5°,∠PBA=26-九年级数学
计算:.-九年级数学
如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上,该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向-九年级数学
校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载.某中学九年级数学活动小组进行了测试汽车速度的实验,如图,先在笔直的公路l旁选取一点A,在公路l上确定点B-九年级数学
如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A、B上的观测点进行观测,从A岛测得渔船在南偏东37°方向C处,B岛在南偏东66°方向,从B岛测得渔船-九年级数学
的值是.-九年级数学
如图,在距离树底部10米的A处,用仪器测得大树顶端C的仰角∠BAC=50°,则这棵树的高度BC是_________米(结果精确到0.1米).-九年级数学
如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AB1C1,则tanB1的值为.-七年级数学
返回顶部
题目简介
如图,一只猫头鹰蹲在一棵树AC的B(点B在AC上)处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住,为了寻找这只老鼠,它又飞至树顶C处,已知短墙高DF=4米,短墙底-九年级数学
题目详情
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
(1)猫头鹰飞至C处后,能否看到这只老鼠?为什么?
(2)要捕捉到这只老鼠,猫头鹰至少要飞多少米(精确到0.1米)?
答案
由题意得,∠DFG=90°﹣53°=37°,则
∵DF=4米,∴DG=4×tan37°=4×0.75=3(米)。
∵老鼠躲藏处M(点M在DE上)距D点3米,∴猫头鹰能看到这只老鼠。
(2)由(1)得,AG=AD+DG=2.7+3=5.7(米),
又
答:要捕捉到这只老鼠,猫头鹰至少要飞9.5米。
试题分析:(1)根据猫头鹰从C点观测F点的俯角为53°,可知∠DFG=90°﹣53°=37°,在△DFG中,已知DF的长度,求出DG的长度,若DG>3,则看不见老鼠,若DG<3,则可以看见老鼠。
(2)根据(1)求出的DG长度,求出AG的长度,然后在Rt△CAG中,根据