设是的两个非空子集,如果存在一个从到的函数满足:(i);(ii)对任意,当时,恒有.那么称这两个集合“保序同构”.现给出以下4对集合.①;②;③;④,其中,“保序同构”的集合对的对-高二数学

题目简介

设是的两个非空子集,如果存在一个从到的函数满足:(i);(ii)对任意,当时,恒有.那么称这两个集合“保序同构”.现给出以下4对集合.①;②;③;④,其中,“保序同构”的集合对的对-高二数学

题目详情

的两个非空子集,如果存在一个从的函数满足:(i);(ii)对任意,当时,恒有.那么称这两个集合“保序同构”.现给出以下4对集合.①;②;③;④,其中,“保序同构”的集合对的对应的序号是      (写出所有“保序同构”的集合对的对应的序号).
题型:单选题难度:中档来源:不详

答案

②③④.

试题分析:“保序同构”的集合是指存在一函数满足:(1).S是的定义域,T是值域,(2). 在S上递增.对于①,若任意,当时,可能有,不是恒有成立,所以①中的两个集合不一定是保序同构,对于②,取符合保序同构定义,对于③,取函数符合保序同构定义,对于④,取符合保序同构定义,故选②③④.

更多内容推荐