对于函数若存在,成立,则称为的不动点.已知(1)当时,求函数的不动点;(2)若对任意实数,函数恒有两个相异的不动点,求的取值范围.-高二数学

题目简介

对于函数若存在,成立,则称为的不动点.已知(1)当时,求函数的不动点;(2)若对任意实数,函数恒有两个相异的不动点,求的取值范围.-高二数学

题目详情

对于函数若存在成立,则称的不动点.已知
(1)当时,求函数的不动点;
(2)若对任意实数,函数恒有两个相异的不动点,求的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)函数的不动点为-1和3;(2).

试题分析:(1)根据不动点的定义知,当时求解该一元二次方程的解即为所求的不动点;(2)首先将题意等价转化为方程有两个不等实根,即需其判别式大于0恒成立,即可求出的取值范围.
试题解析:(1)当时,
 
函数的不动点为-1和3;
(2)有两个不等实根,
转化为有两个不等实根,
需有判别式大于0恒成立,即,    
的取值范围为

更多内容推荐