点P是等腰三角形ABC所在平面外一点,PA⊥平面ABC,PA=8,在△ABC中,BC=6,AB=AC=5,则点P到BC的距离是()A.45B.3C.33D.23-数学

题目简介

点P是等腰三角形ABC所在平面外一点,PA⊥平面ABC,PA=8,在△ABC中,BC=6,AB=AC=5,则点P到BC的距离是()A.45B.3C.33D.23-数学

题目详情

点P是等腰三角形ABC所在平面外一点,PA⊥平面ABC,PA=8,在△ABC中,BC=6,AB=AC=5,则点P到BC的距离是(  )
A.4
5
B.
3
C.3
3
D.2
3
题型:单选题难度:偏易来源:不详

答案

如下图所示:

360优课网

设D为等腰三角形ABC底面上的中点,则PD长即为P点到BC的距离
又∵AD即为三角形的中线,也是三角形BC边上的高
∵BC=6,AB=AC=5,易得AD=4
在直角三角形PAD中,又∵PA=8
∴PD=4
5

故选A

更多内容推荐