在正三棱()A.B.C.D.-高一数学

题目简介

在正三棱()A.B.C.D.-高一数学

题目详情

在正三棱(    )
A.B.C.D.
题型:单选题难度:偏易来源:不详

答案

B

试题分析:根据题意,由于正三棱柱中,在底面ABC的下方补上一个同样的三棱柱,使得平移到下面的三棱柱的对角线,这样可以使得相交,利用解三角形的知识来求解异面直线所成的角,根据题意,由于设,那么可知得到的三角形是等腰三角形,且腰长为,同时底边长为,则由余弦定理可知,则可知异面直线所成的角为直角,故选B.
点评:解决该试题的关键是将直线平移到一个三角形中,结合中位线定理来得到,属于基础题。

更多内容推荐